Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-17T14:48:00.858Z Has data issue: false hasContentIssue false

Verbenone interrupts attraction to host volatiles and reduces attack on Pinus tabuliformis (Pinaceae) by Dendroctonus valens (Coleoptera: Scolytidae) in the People's Republic of China

Published online by Cambridge University Press:  02 April 2012

Jianghua Sun
Affiliation:
Institute of Zoology, Chinese Academy of Sciences, Beijing, 100080 People's Republic of China
Nancy E. Gillette*
Affiliation:
USDA Forest Service, Pacific Southwest Research Station, Berkeley, California 94701, United States of America
Zhengwan Miao
Affiliation:
Pest Control Station, Forestry Department of Shanxi Province, Taiyuan, 030012 People's Republic of China
Le Kang
Affiliation:
Institute of Zoology, Chinese Academy of Sciences, Beijing, 100080 People's Republic of China
Zhongning Zhang
Affiliation:
Institute of Zoology, Chinese Academy of Sciences, Beijing, 100080 People's Republic of China
Donald R. Owen
Affiliation:
California Department of Forestry and Fire Protection, Redding, California 96002, United States of America
John D. Stein
Affiliation:
USDA Forest Service, Forest Health Technology, Morgantown, West Virginia 26505, United States of America
*
1 Corresponding author (e-mail: ngillette@fs.fed.us).

Abstract

The introduced red turpentine beetle, Dendroctonus valens LeConte, is one of the most economically important forest pests in the People's Republic of China, having killed more than 6 million pines in recent years. There is an urgent need to develop effective behavioral chemicals to monitor and control D. valens in the People's Republic of China, as well as in its native range in North America. We tested host kairomones as a 1:1:1 blend of α-pinene, β-pinene, and Δ-3-carene (releasing in the same proportions) for monitoring D. valens populations in the People's Republic of China. We also tested two release systems of verbenone for protection of Pinus tabuliformis Lawson from D. valens attack: (1) polyethylene bubblecaps (BCs) filled with 800 mg of nearly pure verbenone (releasing 18 mg/tree per day) and (2) a sprayable water suspension of microencapsulated (MEC) verbenone (releasing about 100 mg/tree per day). The host-volatile blend trapped substantial numbers of both sexes of adult beetles, up to 15 beetles per day, proving its potential for monitoring. Both of the verbenone release systems significantly reduced D. valens trap catch, and there was no difference between the BC treatment and the MEC treatment. Both release systems also reduced beetle attack on trees to the same level as unbaited controls, from a mean of 5.1 per tree to a mean of 0.7 per tree (for both release systems), suggesting that the treatments may also reduce tree mortality.

Résumé

Le dendroctone rouge de l'épinette, Dendroctonus valens LeConte, une espèce introduite, est, sur le plan économique, l'un des plus importants ravageurs des forêts de République populaire de Chine; il a détruit plus de 6 millions de pins (Pinaceae) au cours des dernières années. Il y a donc un besoin urgent d'identifier les substances chimiques efficaces qui régissent son comportement, de façon à en faire la surveillance et le contrôle en République populaire de Chine, aussi bien qu'on le fait sur son aire de répartition originale en Amérique du Nord. Nous avons testé les kairomones de l'hôte en utilizant un mélange 1:1:1 de α-pinène, de β-pinène et de Δ-3-carène (libérées en proportions égales) pour l'évaluation des populations de D. valens en République populaire de Chine. Nous avons aussi testé deux systèmes de libération de verbénone pour protéger Pinus tabuliformis Lawson des attaques de D. valens : (1) des capsules émettrices de polythène (bubblecaps, BCs) contenant 800 mg de verbénone presque pure (libérant 18 mg/arbre par jour) et (2) une suspension aqueuse pulvérisable de verbénone microencapsulée (MEC; libérant 100 mg/arbre par jour). Le mélange volatile de l'hôte permet la capture d'un bon nombre d'adultes des deux sexes, jusqu'à 15 coléoptères par jour, et montre un bon potentiel comme outil de surveillance. Les deux systèmes de libération de verbénone réduisent significativement les captures de D. valens dans les pièges; il n'y a pas de différence entre les traitements BC et MEC. De plus, les deux systèmes d'émission réduisent les attaques des dendroctones sur les arbres au niveau des arbres témoins sans appât, soit de 5,1 par arbre en moyenne à 0,7 par arbre en moyenne, ce qui fait croire que les traitements peuvent aussi réduire la mortalité des arbres.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bertram, S.L., Paine, T.D. 1994. Influence of aggregation inhibitors (verbenone and ipsdienol) on landing and attack behavior of Dendroctonus brevicomis (Coleoptera: Scolytidae). Journal of Chemical Ecology 20: 1617–29CrossRefGoogle ScholarPubMed
Borden, J.H. 1982. Aggregation pheromones. pp 74139in Mitton, J.B., Sturgeon, K.B. (Eds), Bark beetles in North American conifers: a system for the study of evolutionary biology. Austin, Texas: University of Texas PressGoogle Scholar
Borden, J.H. 1997. Disruption of semiochemical mediated aggregation in bark beetles. pp 421–38 in Cardé, R.T., Minks, A.K. (Eds), Insect pheromone research, new directions. New York: Chapman and HallCrossRefGoogle Scholar
Cibrian Tovar, D.E., Mendez Montiel, J.T., Campos Bolaños, R., Yates, H.O. III, Flores Lara, J. 1995. Forest Insects of Mexico. Asheville, North Carolina: USDA Forest Service Southeastern StationGoogle Scholar
Eaton, B., Rodriguez Lara, R.R. 1967. Red turpentine beetle, Dendroctonus valens LeConte. pp 21–4 in Davidson, A.G., Prentice, R.M. (Eds), Important forest insects and diseases of mutual concern to Canada, the United States and Mexico. Ottawa, Ontario: Canadian Department of Forestry and Rural DevelopmentGoogle Scholar
Erbilgin, N., Raffa, K.F. 2000. Opposing effects of host monoterpenes on responses by two sympatric species of bark beetles to their aggregation pheromones. Journal of Chemical Ecology 26: 2527–48CrossRefGoogle Scholar
Erbilgin, N., Raffa, K.F. 2002. Association of declining red pine stands with reduced populations of bark beetle predators, seasonal increases in root colonizing insects, and incidence of root pathogens. Forest Ecology and Management 164: 221–36CrossRefGoogle Scholar
Erbilgin, N., Szele, A., Klepzig, K.D., Raffa, K.F. 2001. Trap type, chirality of αpinene, and geographic region affect sampling efficiency of root and lower stem insects in pine. Journal of Economic Entomology 9: 1113–21CrossRefGoogle Scholar
Erman, W.F. 1967. Photochemical transformations of unsaturated bicyclic ketones. Verbenone and its photodynamic products of irradiation. Journal of the American Chemical Society 89: 3828–41CrossRefGoogle Scholar
Furniss, R.L., Carolin, V.M. 1977. Western forest insects. USDA Forest Service Miscellaneous Publication 1339Google Scholar
Gibson, K.E., Billings, R.F., Amman, G.D., Oakes, R.D. 1991. Mountain pine beetle response to different verbenone dosages in pine stands of western Montana. US Forest Service Research Paper INT-444Google Scholar
Hall, R.W. 1984. Effectiveness of insecticides for protecting ponderosa pines from attack by red turpentine beetle (Coleoptera: Scolytidae). Journal of Economic Entomology 77: 446–8CrossRefGoogle Scholar
Hobson, K.R. 1995. Host compounds as semiochemicals for bark beetles. US Forest Service General Technical Report INT-GRT-318. pp 4851Google Scholar
Hobson, K.R., Wood, D.L., Cool, L.G., White, P.R., Ohtsuka, T., Kubo, I., Zavarin, E. 1993. Chiral specificity in responses by the bark beetle Dendroctonus valens to host kairomones. Journal of Chemical Ecology 19: 1837–46CrossRefGoogle ScholarPubMed
Holsten, E.H., Web, W., Shea, P.J., Werner, R.A. 2002. Release rates of methylcyclohexenone and verbenone from bubble cap and bead releasers under field conditions suitable for the management of bark beetles in California, Oregon, and Alaska. US Forest Service Pacific Northwest Research Paper 544: 121Google Scholar
Klepzig, K.D., Smalley, E.B., Raffa, K.F. 1996. Combined chemical defenses against an insect–fungal complex. Journal of Chemical Ecology 22: 1367–88CrossRefGoogle ScholarPubMed
Kostyk, B.C., Borden, J.H., Gries, G. 1993. Photoisomerization of antiaggregation pheromone verbenone: biological and practical implications with respect to the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). Journal of Chemical Ecology 19: 1749–59CrossRefGoogle Scholar
Li, J.S., Chang, G.B., Song, Y.S., Wang, Y.W., Chang, B.S. 2001. Control project on red turpentine beetle (Dendroctonus valens). [In Chinese.] Forest Pest and Disease 4: 41–4Google Scholar
Livingston, W.H., Bedard, W.D., Mangini, A.C., Kinzer, H.G. 1983. Verbenone interrupts attraction of roundheaded pine beetle, Dendroctonus adjunctus (Coleoptera: Scolytidae) to sources of natural attractant. Journal of Economic Entomology 76: 1041–3CrossRefGoogle Scholar
McCullough, P., Nelder, J.A. 1989. Generalized linear models. In Monographs on statistics and applied probability 37. New York: Chapman and HallGoogle Scholar
Miao, Z.W., Chou, W.M., Huo, F.Y., Wang, X.L., Fang, J.X., Zhao, M.M. 2001. Biology of Dendroctonus valens in Shanxi Province. [In Chinese.] Shanxi Forest Science and Technology 23: 34–7Google Scholar
Miller, D.R., Borden, J.H., Lindgren, B.S. 1995. Verbenone: dose-dependent interruption of pheromone-based attraction of three sympatric pine bark beetle species. Environmental Entomology 24: 692–6CrossRefGoogle Scholar
Owen, D.R. 1985. The role of Dendroctonus valens. PhD thesis, University of California, BerkeleyGoogle Scholar
Owen, D.R. 2001. Consultation on the red turpentine beetle, Dendroctonus valens, in Shanxi Province, P. R. China, 1–7 July 2001. USDA Forest Service International Programs ReportGoogle Scholar
Owen, D.R., Lindahl, K.Q. Jr, Wood, D.L., Parmeter, J.R. Jr 1987. Pathogenicity of fungi isolated from Dendroctonus valens, D. brevicomis, and D. ponderosae to ponderosa pine seedlings. Phytopathology 77: 631–6CrossRefGoogle Scholar
Paine, T.D., Hanlon, C.C. 1991. Response of Dendroctonus brevicomis and Ips paraconfusus (Coleoptera: Scolytidae) to combinations of synthetic pheromone attractants and inhibitors verbenone and ipsdienol. Journal of Chemical Ecology 17: 2163–76CrossRefGoogle Scholar
Paine, T.D., Raffa, K.F., Harrington, T.C. 1997. Interactions among scolytid bark beetles, their associated fungi, and host conifers. Annual Review of Entomology 42: 179206CrossRefGoogle ScholarPubMed
Payne, T.L., Billings, R.F. 1989. Evaluation of (S)-verbenone applications for suppressing southern pine beetle (Coleoptera: Scolytidae) infestations. Journal of Economic Entomology 82: 1702–8CrossRefGoogle Scholar
Phillips, T.W., Nation, J.L., Wilkinson, R.C., Foltz, J.L. 1989. Secondary attraction and field activity of beetle-produced volatiles in Dendroctonus terebrans. Journal of Chemical Ecology 15: 1513–33Google Scholar
Phillips, T.W., Nation, J.L., Wilkinson, R.C., Foltz, J.L. 1990. Protecting individual pine trees from bark beetle attack using inhibitory behavioral chemicals. Final report of the Georgia Forestry Commission, Project 89-08. Stillwater, Oklahoma: Oklahoma State UniversityGoogle Scholar
Raffa, K.F., Smalley, E.B. 1995. Interactions of pre-attack and induced monoterpene concentrations in host conifer defense against bark beetle – fungal complexes. Oecologia 102: 285–95CrossRefGoogle ScholarPubMed
Rappaport, N.G., Owen, D.R., Stein, J.D. 2001. Interruption of semiochemical-mediated attraction of Dendroctonus valens (Coleoptera: Scolytidae) and selected nontarget insects by verbenone. Environmental Entomology 30: 837–41Google Scholar
Ross, D.W., Birgersson, G., Espelie, K.E., Berisford, C.W. 1995. Monoterpene emissions and cuticular lipids of loblolly and slash pines — potential bases for oviposition preference of the Nantucket pine Tip Moth. Canadian Journal of Botany 73: 21–5Google Scholar
SAS Institute Inc. 1997. SAS/STAT software: changes and enhancements through release 6.12. Cary, North Carolina: SAS Institute IncGoogle Scholar
Shea, P.J., McGregor, M.D., Daterman, G.E. 1992. Aerial application of verbenone reduces attack of lodgepole pine by mountain pine beetle. Canadian Journal of Forest Research 22: 436–41CrossRefGoogle Scholar
Siegfried, B.D., Fatzinger, C.W., Wilkinson, R.C., Nation, J.L. 1986. In-flight responses of the black turpentine beetle (Coleoptera: Scolytidae) to individual monoterpenes, turpentine, and Paraquat-treated slash pines. Environmental Entomology 15: 710–4CrossRefGoogle Scholar
Smith, R.H. 1961. Red turpentine beetle. US Department of Agriculture Forest Pest Leaflet 55: 8Google Scholar
Smith, R.H. 1977. Monoterpenes of ponderosa pine xylem resin in western United States. US Forest Service Technical Bulletin 1532Google Scholar
Svirha, P. 1995. Prevention of red turpentine beetle attack by Sevimol and Dragnet. Journal of Arboriculture 21: 221–4Google Scholar
Vité, J.P., Gara, R. 1962. Volatile attractants from ponderosa pine attacked by bark beetles (Coleoptera: Scolytidae). Contributions of the Boyce Thompson Institute 21: 251–73Google Scholar
White, P.R., Hobson, K.R. 1993. Stereospecific antennal response by the red turpentine beetle, Dendroctonus valens, to chiral monoterpenes from ponderosa pine resin. Journal of Chemical Ecology 19: 2193–202CrossRefGoogle ScholarPubMed
Wood, D.L., Browne, L.E., Ewing, B., Lindahl, K., Bedard, W.D., Tilden, P.E., Mori, K., Pitman, G.B., Hughes, R. 1967. Western pine beetle: specificity among enantiomers of male and female components of an attractive pheromone. Science (Washington, DC) 192: 896–8Google Scholar