Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T19:31:50.375Z Has data issue: false hasContentIssue false

Comparisons of the composition of foliage-dwelling spider assemblages in apple orchards and adjacent deciduous forest

Published online by Cambridge University Press:  02 April 2012

T.E. Sackett*
Affiliation:
Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
C.M. Buddle
Affiliation:
Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
C. Vincent
Affiliation:
Horticultural Research and Development Centre, Agriculture and Agri-Food Canada, 430 Gouin Boulevard, Saint-Jean-sur-Richelieu, Quebec, Canada J3B 3E6
*
2Corresponding author (e-mail: tara.sackett@mail.mcgill.ca).

Abstract

Previous studies have shown that annual crops have different spider (Araneae) assemblages than adjacent relatively natural habitats, suggesting that spider recolonization of crops occurs via long-distance ballooning and that spider species in crops are mainly agrobionts. However, in perennial crops, e.g., apple (Malus domestica Borkhausen (Rosaceae)), which are subject to less physical disturbance than annual crops, overlap in spider species has been observed between tree foliage and adjacent habitats, suggesting that spiders colonize orchards from adjacent vegetation. The objective of this study was to compare the species composition of assemblages of foliage-dwelling spiders in apple orchards with that in adjacent deciduous forest and to determine whether spider assemblages in orchards are dominated by agrobiont species. Spiders were collected from four apple orchards and adjacent deciduous forest in southern Quebec from May until August 2004. The similarity of assemblages between the orchard and forest habitats was evaluated using nonmetric multidimensional scaling and multiresponse permutation procedures and spider species richness in the two habitat types was compared using rarefaction. Although spider species richness was higher in the forest than in the orchards, the composition of the spider assemblages in apple orchards was not significantly different from that in adjacent deciduous forest at three of the four sites. Therefore, adjacent deciduous forest, which is similar to orchards in vegetation structure and frequency of structural disturbance, is likely the main source of spiders found in apple orchards.

Résumé

Des études antérieures ont montré que les cultures annuelles abritent des peuplements d’araignées différents de ceux des habitats à peu près naturels adjacents, ce qui laisse croire que la recolonisation des cultures se fait par parachutage de longue distance et que les espèces d’araignées qui habitent les cultures sont des agrobiontes. Cependant, dans les cultures permanentes (par ex., les vergers), qui connaissent des niveaux moins élevés de perturbation physique que les cultures annuelles, on observe un chevauchement entre les espèces d’araignées du feuillage des arbres et celles des habitats adjacents, ce qui laisse penser que les araignées colonisent les vergers à partir de la végétation environnante. L’objectif de notre étude est de comparer la composition spécifique des peuplements d’araignées vivant dans le feuillage de pommeraies (Malus domestica Borkhausen (Rosaceae)) et dans celui de la forêt décidue adjacente et de déterminer si les peuplements d’araignées des vergers sont dominés par des espèces agrobiontes. Nous avons récolté des araignées dans quatre pommeraies du sud du Québec, Canada, et dans la forêt décidue adjacente de mai à août 2004. Le cadrage multidimensionnel non métrique (NMDS) et des procédures de permutation à réponses multiples (MRPP) nous ont servi à évaluer la similarité des peuplements dans les vergers et les habitats forestiers; une procédure de raréfaction a permis de comparer la richesse spécifique dans les habitats. Bien que la richesse spécifique des araignées soit plus élevée dans les forêts que dans les vergers, la composition des peuplements d’araignées des pommeraies ne diffère pas significativement de celle de la forêt décidue adjacente à trois des quatre sites. En conséquence, il est vraisemblable que la forêt décidue adjacente, qui ressemble aux vergers par la structure de sa végétation et la fréquence de ses perturbations structurales, soit une source majeure des araignées dans les pommeraies.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bajwa, W.I., and Aliniazee, M.T. 2001. Spider fauna in apple ecosystem of western Oregon and its field susceptibility to chemical and microbial insecticides. Journal of Economic Entomology, 94: 6875.CrossRefGoogle ScholarPubMed
Beals, M.L. 2006. Understanding community structure: a data-driven multivariate approach. Oecologia, 150: 484495.CrossRefGoogle ScholarPubMed
Bianchi, F., Booij, C.J.H., and Tscharntke, T. 2006. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proceedings of the Royal Society B Biological Sciences, 273: 17151727.CrossRefGoogle ScholarPubMed
Bishop, L., and Riechert, S.E. 1990. Spider colonization of agroecosystems — mode and source. Environmental Entomology, 19: 17381745.CrossRefGoogle Scholar
Bogya, S., Markó, V., and Szinetár, C. 2000. Effect of pest management systems on foliage- and grass-dwelling spider communities in an apple orchard in Hungary. International Journal of Pest Management, 46: 241250.CrossRefGoogle Scholar
Bostanian, N.J., Dondale, C.D., Binns, M.R., and Pitre, D. 1984. Effects of pesticide use on spiders (Araneae) in Quebec apple orchards. The Canadian Entomologist, 116: 663675.CrossRefGoogle Scholar
Clough, Y., Kruess, A., Kleijn, D., and Tscharntke, T. 2005. Spider diversity in cereal fields: comparing factors at local, landscape and regional scales. Journal of Biogeography, 32: 20072014.CrossRefGoogle Scholar
Dondale, C.D., Parent, B., and Pitre, D. 1979. A 6-year study of spiders (Araneae) in a Quebec apple orchard. The Canadian Entomologist, 111: 377380.CrossRefGoogle Scholar
Dondale, C.D., Redner, J.H., Paquin, P., and Levi, H.W. 2003. The orb-weaving spiders of Canada and Alaska (Araneae: Uloboridae, Tetragnathidae, Araneidae, Theridiosomatidae). NRC Research Press, Ottawa, Ontario.Google Scholar
Dufrêne, M., and Legendre, P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67: 345366.Google Scholar
Ehmann, W.J. 1994. Organization of spider assemblages on shrubs — an assessment of the role of dispersal mode in colonization. American Midland Naturalist, 131: 301310.CrossRefGoogle Scholar
Gotelli, N.J., and Entsminger, G.L. 2001. EcoSim: null models software for ecology. Version 7 [on-line]. Acquired Intelligence Inc. and Kesey-Bear, Jericho, Vermont. Available from http://www.garyentsminger.com/ecosim/index.htm [accessed 1 June 2007].Google Scholar
Greenstone, M.H. 1984. Determinants of web spider species-diversity — vegetation structural diversity vs prey availability. Oecologia, 62: 299304.CrossRefGoogle ScholarPubMed
Halley, J.M., Thomas, C.F.G., and Jepson, P.C. 1996. A model for the spatial dynamics of linyphiid spiders in farmland. Journal of Applied Ecology, 33: 471492.CrossRefGoogle Scholar
Heikkinen, M.W., and MacMahon, J.A. 2004. Assemblages of spiders on models of semi-arid shrubs. Journal of Arachnology, 32: 313323.CrossRefGoogle Scholar
Isaia, M., Bona, F., and Badino, G. 2006. Influence of landscape diversity and agricultural practices on spider assemblage in Italian vineyards of Langa Astgiana (northwest Italy). Environmental Entomology, 35: 297307.CrossRefGoogle Scholar
Langellotto, G.A., and Denno, R.F. 2004. Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia, 139: 110.CrossRefGoogle ScholarPubMed
Magurran, A.E. 2004. Measuring biological diversity. Blackwell Science, Oxford, United Kingdom.Google Scholar
Marc, P., and Canard, A. 1997. Maintaining spider biodiversity in agroecosystems as a tool in pest control. Agriculture, Ecosystems and Environment, 62: 229235.CrossRefGoogle Scholar
Marc, P., Canard, A., and Ysnel, F. 1999. Spiders (Araneae) useful for pest limitation and bioindication. Agriculture, Ecosystems and Environment, 74: 229273.CrossRefGoogle Scholar
McCaffrey, J.P., and Horsburgh, R.L. 1980. The spider (Arachnida, Araneae) fauna of apple trees in central Virginia. Environmental Entomology, 9: 247252.CrossRefGoogle Scholar
McCune, B., and Grace, J.B. 2002. Analysis of ecological communities. MjM Software Design, Gleneden Beach, Oregon.Google Scholar
McCune, B., and Mefford, M.J. 1999. PC-ORD: multivariate analysis of ecological data [computer program]. Version 4. MjM Software Design, Gleneden Beach, Oregon.Google Scholar
McNett, B.J., and Rypstra, A.L. 2000. Habitat selection in a large orb-weaving spider: vegetational complexity determines site selection and distribution. Ecological Entomology, 25: 423432.CrossRefGoogle Scholar
Miliczky, E.R., and Horton, D.R. 2005. Densities of beneficial arthropods within pear and apple orchards affected by distance from adjacent native habitat and association of natural enemies with extra-orchard host plants. Biological Control, 33: 249259.CrossRefGoogle Scholar
Nyffeler, M., and Sunderland, K.D. 2003. Composition, abundance and pest control potential of spider communities in agroecosystems: a comparison of European and US studies. Agriculture, Ecosystems and Environment, 95: 579612.CrossRefGoogle Scholar
Olszak, R.W., Luczak, J., Niemczyk, E., and Zajac, R.Z. 1992 a. The spider community associated with apple trees under different pressure of pesticides. Ekologia Polska, 40: 265286.Google Scholar
Olszak, R.W., Luczak, J., and Zajac, R.Z. 1992 b. Species composition and numbers of spider communities occurring on different species of shrubs. Ekologia Polska, 40: 287313.Google Scholar
Paquin, P., and Dupérré, N. 2003. Guide d'identification des Araignées (Araneae) du Québec. Faberies, Supplément 11.Google Scholar
Pekàr, S. 1999 a. Effect of IPM practices and conventional spraying on spider population dynamics in an apple orchard. Agriculture, Ecosystems and Environment, 73: 155166.CrossRefGoogle Scholar
Pekár, S. 1999 b. Foraging mode: a factor affecting the susceptibility of spiders (Araneae) to insecticide applications. Pesticide Science, 55: 10771082.3.0.CO;2-T>CrossRefGoogle Scholar
Platnick, N.I. 2007. The world spider catalog. Version 7.5 [online]. Available from http://research.amnh.org/entomology/spiders/catalog/index.html [accessed 1 June 2007].Google Scholar
Riechert, S.E., and Lockley, T. 1984. Spiders as biological control agents. Annual Review of Entomology, 29: 299320.CrossRefGoogle Scholar
Robinson, J.V. 1981. The effect of architectural variation in habitat on a spider community — an experimental field study. Ecology, 62: 7380.CrossRefGoogle Scholar
Rypstra, A.L., Carter, P.E., Balfour, R.A., and Marshall, S.D. 1999. Architectural features of agricultural habitats and their impact on the spider inhabitants. Journal of Arachnology, 27: 371377.Google Scholar
Sackett, T.E., Buddle, C.M., and Vincent, C. 2008. Relevance of collected juveniles to the analysis of spider communities. Journal of Arachnology. In press.CrossRefGoogle Scholar
Samu, F., and Szinetár, C. 2002. On the nature of agrobiont spiders. Journal of Arachnology, 30: 389402.CrossRefGoogle Scholar
Samu, F., Racz, V., Erdelyi, C., and Balazs, K. 1997. Spiders of the foliage and herbaceous layer of an IPM apple orchard in Kecskemet-Szarkas, Hungary. Biological Agriculture and Horticulture, 15: 131140.CrossRefGoogle Scholar
Schmidt, M.H., and Tscharntke, T. 2005. Landscape context of sheetweb spider (Araneae: Linyphiidae) abundance in cereal fields. Journal of Biogeography, 32: 467473.CrossRefGoogle Scholar
Sunderland, K., and Samu, F. 2000. Effects of agricultural diversification on the abundance, distribution, and pest control potential of spiders: a review. Entomologia Experimentalis et Applicata, 95: 113.CrossRefGoogle Scholar
Thorbek, P., and Topping, C.J. 2005. The influence of landscape diversity and heterogeneity on spatial dynamics of agrobiont linyphiid spiders: an individual-based model. Biocontrol, 50: 133.CrossRefGoogle Scholar
Topping, C.J., and Lovei, G.L. 1997. Spider density and diversity in relation to disturbance in agroecosystems in New Zealand, with a comparison to England. New Zealand Journal of Ecology, 21: 121128.Google Scholar
Weyman, G.S. 1993. A review of the possible causative factors and significance of ballooning in spiders. Ethology, Ecology and Evolution, 5: 279291.CrossRefGoogle Scholar
Wisniewska, J., and Prokopy, R.J. 1997. Pesticide effect on faunal composition, abundance, and body length of spiders (Araneae) in apple orchards. Environmental Entomology, 26: 763776.CrossRefGoogle Scholar
Wissinger, S.A. 1997. Cyclic colonization in predictably ephemeral habitats: a template for biological control in annual crop systems. Biological Control, 10: 415.CrossRefGoogle Scholar
Young, O.P., and Edwards, G.B. 1990. Spiders in United States field crops and their potential effect on crop pests. Journal of Arachnology, 18: 127.Google Scholar
Ysnel, F., and Canard, A. 2000. Spider biodiversity in connection with the vegetation structure and the foliage orientation of hedges. Journal of Arachnology, 28: 107114.CrossRefGoogle Scholar
Zimmerman, G.M., Goetz, H., and Mielke, P.W. 1985. Use of an improved statistical method for group comparisons to study effects of prairie fire. Ecology, 66: 606611.CrossRefGoogle Scholar