Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T14:15:10.969Z Has data issue: false hasContentIssue false

Myofibroblasts in the Infarct Area: Concepts and Challenges

Published online by Cambridge University Press:  04 January 2012

Evangelos P. Daskalopoulos
Affiliation:
Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University, 50 Universiteitssingel, 6229ER Maastricht, P.O. Box 616, 6200MD Maastricht, The Netherlands
Ben J.A. Janssen
Affiliation:
Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University, 50 Universiteitssingel, 6229ER Maastricht, P.O. Box 616, 6200MD Maastricht, The Netherlands
W. Matthijs Blankesteijn*
Affiliation:
Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University, 50 Universiteitssingel, 6229ER Maastricht, P.O. Box 616, 6200MD Maastricht, The Netherlands
*
Corresponding author. E-mail: wm.blankesteijn@maastrichtuniversity.nl
Get access

Abstract

Myofibroblasts are differentiated fibroblasts that hold a key role in wound healing and remodeling following myocardial infarction (MI). A large repertoire of stimuli, such as mechanical stretch, growth factors, cytokines, and vasoactive peptides, induces myofibroblast differentiation. Myofibroblasts are responsible for the production and deposition of collagen, leading to the establishment of a dense extracellular matrix that strengthens the infarcted tissue and minimizes dilatation of the infarct area. In addition, cells contributing to fibrosis act on sites distal from the infarct area and promote collagen deposition in noninfarcted tissue, thus contributing to adverse remodeling and consequently to the development of congestive heart failure (CHF). Current drugs that are used to treat post-MI CHF do influence fibroblasts and myofibroblasts; however, their therapeutic efficacy is far from being regarded as ideal. Novel therapeutic agents targeting (myo)fibroblasts are being developed to successfully prevent the cardiac remodeling of sites remote from the infarct area and therefore hinder the establishment of CHF. The purpose of this review article is to discuss the basic concepts of the myofibroblasts' actions in cardiac wound healing processes, factors that influence them, currently available pharmacological agents, and future challenges in this area.

Type
Review Article
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aisagbonhi, O., Rai, M., Ryzhov, S., Atria, N., Feoktistov, I. & Hatzopoulos, A.K. (2011). Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition. Dis Model Mech 4(4), 469483.CrossRefGoogle ScholarPubMed
Akasaka, T. (2010). What can we expect in PCI in patients with chronic coronary artery disease. Indication of PCI for angiographically significant coronary artery stenosis without objective evidence of myocardial ischemia (Con). Circ J 75(1), 211217; discussion 210.CrossRefGoogle Scholar
Akiyoshi, S., Inoue, H., Hanai, J., Kusanagi, K., Nemoto, N., Miyazono, K. & Kawabata, M. (1999). c-Ski acts as a transcriptional co-repressor in transforming growth factor-beta signaling through interaction with smads. J Biol Chem 274(49), 3526935277.CrossRefGoogle ScholarPubMed
Banerjee, I., Fuseler, J.W., Intwala, A.R. & Baudino, T.A. (2009). IL-6 loss causes ventricular dysfunction, fibrosis, reduced capillary density, and dramatically alters the cell populations of the developing and adult heart. Am J Physiol Heart Circ Physiol 296(5), H1694H1704.CrossRefGoogle ScholarPubMed
Baudino, T.A., Carver, W., Giles, W. & Borg, T.K. (2006). Cardiac fibroblasts: Friend or foe? Am J Physiol Heart Circ Physiol 291(3), H1015H1026.CrossRefGoogle ScholarPubMed
Baum, J. & Duffy, H.S. (2011). Fibroblasts and myofibroblasts: What are we talking about? J Cardiovasc Pharmacol 57(4), 376379.CrossRefGoogle ScholarPubMed
Bellini, A. & Mattoli, S. (2007). The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest 87(9), 858870.CrossRefGoogle ScholarPubMed
Beltrami, C.A., Finato, N., Rocco, M., Feruglio, G.A., Puricelli, C., Cigola, E., Quaini, F., Sonnenblick, E.H., Olivetti, G. & Anversa, P. (1994). Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 89(1), 151163.CrossRefGoogle ScholarPubMed
Blankesteijn, W.M., Essers-Janssen, Y.P., Verluyten, M.J., Daemen, M.J. & Smits, J.F. (1997). A homologue of Drosophila tissue polarity gene frizzled is expressed in migrating myofibroblasts in the infarcted rat heart. Nat Med 3(5), 541544.CrossRefGoogle ScholarPubMed
Blankesteijn, W.M., van de Schans, V.A., ter Horst, P. & Smits, J.F. (2008). The Wnt/frizzled/GSK-3 beta pathway: A novel therapeutic target for cardiac hypertrophy. Trends Pharmacol Sci 29(4), 175180.CrossRefGoogle ScholarPubMed
Brilla, C.G., Maisch, B., Zhou, G. & Weber, K.T. (1995). Hormonal regulation of cardiac fibroblast function. Eur Heart J 16(Suppl C), 4550.CrossRefGoogle ScholarPubMed
Brilla, C.G., Zhou, G., Matsubara, L. & Weber, K.T. (1994). Collagen metabolism in cultured adult rat cardiac fibroblasts: Response to angiotensin II and aldosterone. J Mol Cell Cardiol 26(7), 809820.CrossRefGoogle ScholarPubMed
Bui, A.L., Horwich, T.B. & Fonarow, G.C. (2011). Epidemiology and risk profile of heart failure. Nat Rev Cardiol 8(1), 3041.CrossRefGoogle ScholarPubMed
Buja, L.M. & Vela, D. (2008). Cardiomyocyte death and renewal in the normal and diseased heart. Cardiovasc Pathol 17(6), 349374.CrossRefGoogle ScholarPubMed
Bujak, M. & Frangogiannis, N.G. (2007). The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res 74(2), 184195.CrossRefGoogle ScholarPubMed
Bujak, M., Ren, G., Kweon, H.J., Dobaczewski, M., Reddy, A., Taffet, G., Wang, X.F. & Frangogiannis, N.G. (2007). Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation 116(19), 21272138.CrossRefGoogle ScholarPubMed
Camelliti, P., Borg, T.K. & Kohl, P. (2005). Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res 65(1), 4051.CrossRefGoogle ScholarPubMed
Campbell, J. & Hilleman, D. (2010). Recombinant peptides in thrombolysis. Semin Thromb Hemost 36(5), 529536.CrossRefGoogle ScholarPubMed
Carthy, J.M., Garmaroudi, F.S., Luo, Z. & McManus, B.M. (2011). Wnt3a induces myofibroblast differentiation by upregulating TGF-beta signaling through SMAD2 in a beta-catenin-dependent manner. PLoS One 6(5), e19809.CrossRefGoogle Scholar
Cave, A.C., Brewer, A.C., Narayanapanicker, A., Ray, R., Grieve, D.J., Walker, S. & Shah, A.M. (2006). NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 8(5-6), 691728.CrossRefGoogle ScholarPubMed
Cleutjens, J.P., Blankesteijn, W.M., Daemen, M.J. & Smits, J.F. (1999). The infarcted myocardium: Simply dead tissue, or a lively target for therapeutic interventions. Cardiovasc Res 44(2), 232241.CrossRefGoogle ScholarPubMed
Cleutjens, J.P., Verluyten, M.J., Smiths, J.F. & Daemen, M.J. (1995). Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol 147(2), 325338.Google ScholarPubMed
Cortez, D.M., Feldman, M.D., Mummidi, S., Valente, A.J., Steffensen, B., Vincenti, M., Barnes, J.L. & Chandrasekar, B. (2007). IL-17 stimulates MMP-1 expression in primary human cardiac fibroblasts via p38 MAPK- and ERK1/2-dependent C/EBP-beta, NF-kappaB, and AP-1 activation. Am J Physiol Heart Circ Physiol 293(6), H3356H3365.CrossRefGoogle ScholarPubMed
Cucoranu, I., Clempus, R., Dikalova, A., Phelan, P.J., Ariyan, S., Dikalov, S. & Sorescu, D. (2005). NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97(9), 900907.CrossRefGoogle ScholarPubMed
Cunnington, R.H., Wang, B., Ghavami, S., Bathe, K.L., Rattan, S.G. & Dixon, I.M. (2011). Antifibrotic properties of c-Ski and its regulation of cardiac myofibroblast phenotype and contractility. Am J Physiol Cell Physiol 300(1), C176C186.CrossRefGoogle ScholarPubMed
Dewald, O., Ren, G., Duerr, G.D., Zoerlein, M., Klemm, C., Gersch, C., Tincey, S., Michael, L.H., Entman, M.L. & Frangogiannis, N.G. (2004). Of mice and dogs: Species-specific differences in the inflammatory response following myocardial infarction. Am J Pathol 164(2), 665677.CrossRefGoogle ScholarPubMed
Diaz-Flores, L., Gutierrez, R., Madrid, J.F., Varela, H., Valladares, F., Acosta, E., Martin-Vasallo, P. & Diaz-Flores, L. Jr. (2009). Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 24(7), 909969.Google Scholar
Dickson, M.C., Martin, J.S., Cousins, F.M., Kulkarni, A.B., Karlsson, S. & Akhurst, R.J. (1995). Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 121(6), 18451854.CrossRefGoogle ScholarPubMed
Dixon, I.M. (2010). The soluble interleukin 6 receptor takes its place in the pantheon of interleukin 6 signaling proteins: Phenoconversion of cardiac fibroblasts to myofibroblasts. Hypertension 56(2), 193195.CrossRefGoogle ScholarPubMed
Dobaczewski, M., Bujak, M., Li, N., Gonzalez-Quesada, C., Mendoza, L.H., Wang, X.F. & Frangogiannis, N.G. (2010). Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circ Res 107(3), 418428.CrossRefGoogle ScholarPubMed
Dobaczewski, M., Bujak, M., Zymek, P., Ren, G., Entman, M.L. & Frangogiannis, N.G. (2006). Extracellular matrix remodeling in canine and mouse myocardial infarcts. Cell Tissue Res 324(3), 475488.CrossRefGoogle ScholarPubMed
Dobaczewski, M., Chen, W. & Frangogiannis, N.G. (2011). Transforming growth factor (TGF)-beta signaling in cardiac remodeling. J Mol Cell Cardiol 51(4), 600606.CrossRefGoogle ScholarPubMed
Duisters, R.F., Tijsen, A.J., Schroen, B., Leenders, J.J., Lentink, V., van der Made, I., Herias, V., van Leeuwen, R.E., Schellings, M.W., Barenbrug, P., Maessen, J.G., Heymans, S., Pinto, Y.M. & Creemers, E.E. (2009). miR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 104(2), 170178, 176p following 178.CrossRefGoogle ScholarPubMed
Ellmers, L.J., Scott, N.J., Medicherla, S., Pilbrow, A.P., Bridgman, P.G., Yandle, T.G., Richards, A.M., Protter, A.A. & Cameron, V.A. (2008). Transforming growth factor-beta blockade down-regulates the renin-angiotensin system and modifies cardiac remodeling after myocardial infarction. Endocrinology 149(11), 58285834.CrossRefGoogle ScholarPubMed
Fix, C., Bingham, K. & Carver, W. (2011). Effects of interleukin-18 on cardiac fibroblast function and gene expression. Cytokine 53(1), 1928.CrossRefGoogle ScholarPubMed
Fomovsky, G.M. & Holmes, J.W. (2010). Evolution of scar structure, mechanics, and ventricular function after myocardial infarction in the rat. Am J Physiol Heart Circ Physiol 298(1), H221H228.CrossRefGoogle ScholarPubMed
Fomovsky, G.M., Thomopoulos, S. & Holmes, J.W. (2010). Contribution of extracellular matrix to the mechanical properties of the heart. J Mol Cell Cardiol 48(3), 490496.CrossRefGoogle Scholar
Frangogiannis, N.G. (2006). Targeting the inflammatory response in healing myocardial infarcts. Curr Med Chem 13(16), 18771893.CrossRefGoogle ScholarPubMed
Frantz, S., Bauersachs, J. & Ertl, G. (2009). Post-infarct remodelling: Contribution of wound healing and inflammation. Cardiovasc Res 81(3), 474481.CrossRefGoogle ScholarPubMed
Frantz, S., Hu, K., Adamek, A., Wolf, J., Sallam, A., Maier, S.K., Lonning, S., Ling, H., Ertl, G. & Bauersachs, J. (2008). Transforming growth factor beta inhibition increases mortality and left ventricular dilatation after myocardial infarction. Basic Res Cardiol 103(5), 485492.CrossRefGoogle ScholarPubMed
Freed, D.H., Borowiec, A.M., Angelovska, T. & Dixon, I.M. (2003). Induction of protein synthesis in cardiac fibroblasts by cardiotrophin-1: Integration of multiple signaling pathways. Cardiovasc Res 60(2), 365375.CrossRefGoogle ScholarPubMed
Freed, D.H., Cunnington, R.H., Dangerfield, A.L., Sutton, J.S. & Dixon, I.M. (2005). Emerging evidence for the role of cardiotrophin-1 in cardiac repair in the infarcted heart. Cardiovasc Res 65(4), 782792.CrossRefGoogle ScholarPubMed
Fries, K.M., Blieden, T., Looney, R.J., Sempowski, G.D., Silvera, M.R., Willis, R.A. & Phipps, R.P. (1994). Evidence of fibroblast heterogeneity and the role of fibroblast subpopulations in fibrosis. Clin Immunol Immunopathol 72(3), 283292.CrossRefGoogle ScholarPubMed
Gabbiani, G., Ryan, G.B. & Majne, G. (1971). Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 27(5), 549550.CrossRefGoogle ScholarPubMed
Ge, Y., Bagnall, A., Stricklett, P.K., Webb, D., Kotelevtsev, Y. & Kohan, D.E. (2008). Combined knockout of collecting duct endothelin A and B receptors causes hypertension and sodium retention. Am J Physiol Renal Physiol 295(6), F1635F1640.CrossRefGoogle Scholar
Grossman, J. & Frishman, W.H. (2010). Relaxin: A new approach for the treatment of acute congestive heart failure. Cardiol Rev 18(6), 305312.CrossRefGoogle ScholarPubMed
Guarda, E., Katwa, L.C., Myers, P.R., Tyagi, S.C. & Weber, K.T. (1993). Effects of endothelins on collagen turnover in cardiac fibroblasts. Cardiovasc Res 27(12), 21302134.CrossRefGoogle ScholarPubMed
Gurantz, D., Cowling, R.T., Varki, N., Frikovsky, E., Moore, C.D. & Greenberg, B.H. (2005). IL-1beta and TNF-alpha upregulate angiotensin II type 1 (AT1) receptors on cardiac fibroblasts and are associated with increased AT1 density in the post-MI heart. J Mol Cell Cardiol 38(3), 505515.CrossRefGoogle ScholarPubMed
He, W., Zhang, L., Ni, A., Zhang, Z., Mirotsou, M., Mao, L., Pratt, R.E. & Dzau, V.J. (2010). Exogenously administered secreted frizzled related protein 2 (Sfrp2) reduces fibrosis and improves cardiac function in a rat model of myocardial infarction. Proc Natl Acad Sci USA 107(49), 2111021115.CrossRefGoogle Scholar
Hecker, L., Vittal, R., Jones, T., Jagirdar, R., Luckhardt, T.R., Horowitz, J.C., Pennathur, S., Martinez, F.J. & Thannickal, V.J. (2009). NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 15(9), 10771081.CrossRefGoogle ScholarPubMed
Hinz, B. (2007). Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 127(3), 526537.CrossRefGoogle ScholarPubMed
Hinz, B., Celetta, G., Tomasek, J.J., Gabbiani, G. & Chaponnier, C. (2001). Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 12(9), 27302741.CrossRefGoogle ScholarPubMed
Hinz, B. & Gabbiani, G. (2003). Mechanisms of force generation and transmission by myofibroblasts. Curr Opin Biotechnol 14(5), 538546.CrossRefGoogle ScholarPubMed
Holmes, J.W., Borg, T.K. & Covell, J.W. (2005). Structure and mechanics of healing myocardial infarcts. Annu Rev Biomed Eng 7, 223253.CrossRefGoogle ScholarPubMed
Holmes, J.W., Nunez, J.A. & Covell, J.W. (1997). Functional implications of myocardial scar structure. Am J Physiol 272(5 Pt 2), H2123H2130.Google ScholarPubMed
Husse, B., Briest, W., Homagk, L., Isenberg, G. & Gekle, M. (2007). Cyclical mechanical stretch modulates expression of collagen I and collagen III by PKC and tyrosine kinase in cardiac fibroblasts. Am J Physiol Regul Integr Comp Physiol 293(5), R1898R1907.CrossRefGoogle ScholarPubMed
Hyde, A., Blondel, B., Matter, A., Cheneval, J.P., Filloux, B. & Girardier, L. (1969). Homo- and heterocellular junctions in cell cultures: An electrophysiological and morphological study. Prog Brain Res 31, 283311.CrossRefGoogle ScholarPubMed
Katwa, L.C. (2003). Cardiac myofibroblasts isolated from the site of myocardial infarction express endothelin de novo. Am J Physiol Heart Circ Physiol 285(3), H1132H1139.CrossRefGoogle ScholarPubMed
Katwa, L.C., Campbell, S.E., Tyagi, S.C., Lee, S.J., Cicila, G.T. & Weber, K.T. (1997). Cultured myofibroblasts generate angiotensin peptides de novo. J Mol Cell Cardiol 29(5), 13751386.CrossRefGoogle ScholarPubMed
Kim, S. & Iwao, H. (2000). Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev 52(1), 1134.Google ScholarPubMed
Kober, L., Torp-Pedersen, C., Carlsen, J.E., Bagger, H., Eliasen, P., Lyngborg, K., Videbaek, J., Cole, D.S., Auclert, L. & Pauly, N.C. (1995). A clinical trial of the angiotensin-converting-enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. Trandolapril Cardiac Evaluation (TRACE) Study Group. N Engl J Med 333(25), 16701676.CrossRefGoogle ScholarPubMed
Konstam, M.A., Kramer, D.G., Patel, A.R., Maron, M.S. & Udelson, J.E. (2011). Left ventricular remodeling in heart failure: Current concepts in clinical significance and assessment. JACC Cardiovasc Imaging 4(1), 98108.CrossRefGoogle ScholarPubMed
Krishnamurthy, P., Rajasingh, J., Lambers, E., Qin, G., Losordo, D.W. & Kishore, R. (2009). IL-10 inhibits inflammation and attenuates left ventricular remodeling after myocardial infarction via activation of STAT3 and suppression of HuR. Circ Res 104(2), e9e18.CrossRefGoogle ScholarPubMed
Laeremans, H., Hackeng, T.M., van Zandvoort, M.A., Thijssen, V.L., Janssen, B.J., Ottenheijm, H.C., Smits, J.F. & Blankesteijn, W.M. (2011). Blocking of frizzled signaling with a homologous peptide fragment of Wnt3a/Wnt5a reduces infarct expansion and prevents the development of heart failure after myocardial infarction. Circulation 124(15), 16261635.CrossRefGoogle ScholarPubMed
Laeremans, H., Rensen, S.S., Ottenheijm, H.C., Smits, J.F. & Blankesteijn, W.M. (2010). Wnt/frizzled signalling modulates the migration and differentiation of immortalized cardiac fibroblasts. Cardiovasc Res 87(3), 514523.CrossRefGoogle ScholarPubMed
Leask, A. & Abraham, D.J. (2004). TGF-beta signaling and the fibrotic response. FASEB J 18(7), 816827.CrossRefGoogle ScholarPubMed
Lefkowitz, R.J., Rockman, H.A. & Koch, W.J. (2000). Catecholamines, cardiac beta-adrenergic receptors, and heart failure. Circulation 101(14), 16341637.CrossRefGoogle ScholarPubMed
Lenga, Y., Koh, A., Perera, A.S., McCulloch, C.A., Sodek, J. & Zohar, R. (2008). Osteopontin expression is required for myofibroblast differentiation. Circ Res 102(3), 319327.CrossRefGoogle ScholarPubMed
Lijnen, P.J., Petrov, V.V. & Fagard, R.H. (2001). Angiotensin II-induced stimulation of collagen secretion and production in cardiac fibroblasts is mediated via angiotensin II subtype 1 receptors. J Renin Angiotensin Aldosterone Syst 2(2), 117122.CrossRefGoogle ScholarPubMed
Manabe, R., Ohe, N., Maeda, T., Fukuda, T. & Sekiguchi, K. (1997). Modulation of cell-adhesive activity of fibronectin by the alternatively spliced EDA segment. J Cell Biol 139(1), 295307.CrossRefGoogle ScholarPubMed
Matsui, Y., Morimoto, J. & Uede, T. (2010). Role of matricellular proteins in cardiac tissue remodeling after myocardial infarction. World J Biol Chem 1(5), 6980.CrossRefGoogle ScholarPubMed
McKelvie, R.S., Yusuf, S., Pericak, D., Avezum, A., Burns, R.J., Probstfield, J., Tsuyuki, R.T., White, M., Rouleau, J., Latini, R., Maggioni, A., Young, J. & Pogue, J. (1999). Comparison of candesartan, enalapril, and their combination in congestive heart failure: Randomized evaluation of strategies for left ventricular dysfunction (RESOLVD) pilot study. The RESOLVD Pilot Study Investigators. Circulation 100(10), 10561064.CrossRefGoogle ScholarPubMed
McMahon, J.A. & McMahon, A.P. (1989). Nucleotide sequence, chromosomal localization and developmental expression of the mouse int-1-related gene. Development 107(3), 643650.CrossRefGoogle ScholarPubMed
McMurray, J.J., Ostergren, J., Swedberg, K., Granger, C.B., Held, P., Michelson, E.L., Olofsson, B., Yusuf, S. & Pfeffer, M.A. (2003). Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting-enzyme inhibitors: The CHARM-Added trial. Lancet 362(9386), 767771.CrossRefGoogle ScholarPubMed
McMurray, J.J. & Pfeffer, M.A. (2005). Heart failure. Lancet 365(9474), 18771889.CrossRefGoogle ScholarPubMed
Melchior-Becker, A., Dai, G., Ding, Z., Schafer, L., Schrader, J., Young, M.F. & Fischer, J.W. (2011). Deficiency of biglycan causes cardiac fibroblasts to differentiate into a myofibroblast phenotype. J Biol Chem 286(19), 1736517375.CrossRefGoogle ScholarPubMed
Melendez, G.C., McLarty, J.L., Levick, S.P., Du, Y., Janicki, J.S. & Brower, G.L. (2010). Interleukin 6 mediates myocardial fibrosis, concentric hypertrophy, and diastolic dysfunction in rats. Hypertension 56(2), 225231.CrossRefGoogle ScholarPubMed
Meran, S. & Steadman, R. (2011). Fibroblasts and myofibroblasts in renal fibrosis. Int J Exp Pathol 92(3), 158167.CrossRefGoogle ScholarPubMed
Meszaros, J.G., Gonzalez, A.M., Endo-Mochizuki, Y., Villegas, S., Villarreal, F. & Brunton, L.L. (2000). Identification of G protein-coupled signaling pathways in cardiac fibroblasts: Cross talk between G(q) and G(s). Am J Physiol Cell Physiol 278(1), C154C162.CrossRefGoogle Scholar
Minnaard-Huiban, M., Hermans, J.J., Essen, H., Bitsch, N. & Smits, J.F. (2008). Comparison of the effects of intrapericardial and intravenous aldosterone infusions on left ventricular fibrosis in rats. Eur J Heart Fail 10(12), 11661171.CrossRefGoogle ScholarPubMed
Nag, A.C. (1980). Study of non-muscle cells of the adult mammalian heart: A fine structural analysis and distribution. Cytobios 28(109), 4161.Google Scholar
Nahrendorf, M., Pittet, M.J. & Swirski, F.K. (2010). Monocytes: Protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121(22), 24372445.CrossRefGoogle ScholarPubMed
Neumann, S., Huse, K., Semrau, R., Diegeler, A., Gebhardt, R., Buniatian, G.H. & Scholz, G.H. (2002). Aldosterone and D-glucose stimulate the proliferation of human cardiac myofibroblasts in vitro. Hypertension 39(3), 756760.CrossRefGoogle ScholarPubMed
Nusse, R. & Varmus, H.E. (1982). Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31(1), 99109.CrossRefGoogle ScholarPubMed
Olivetti, G., Melissari, M., Balbi, T., Quaini, F., Sonnenblick, E.H. & Anversa, P. (1994). Myocyte nuclear and possible cellular hyperplasia contribute to ventricular remodeling in the hypertrophic senescent heart in humans. J Am Coll Cardiol 24(1), 140149.CrossRefGoogle ScholarPubMed
Owan, T.E., Hodge, D.O., Herges, R.M., Jacobsen, S.J., Roger, V.L. & Redfield, M.M. (2006). Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 355(3), 251259.CrossRefGoogle ScholarPubMed
Palmer, J.N., Hartogensis, W.E., Patten, M., Fortuin, F.D. & Long, C.S. (1995). Interleukin-1 beta induces cardiac myocyte growth but inhibits cardiac fibroblast proliferation in culture. J Clin Invest 95(6), 25552564.CrossRefGoogle ScholarPubMed
Pellman, J., Lyon, R.C. & Sheikh, F. (2010). Extracellular matrix remodeling in atrial fibrosis: Mechanisms and implications in atrial fibrillation. J Mol Cell Cardiol 48(3), 461467.CrossRefGoogle ScholarPubMed
Pfeffer, M.A., McMurray, J.J., Velazquez, E.J., Rouleau, J.L., Kober, L., Maggioni, A.P., Solomon, S.D., Swedberg, K., Van de Werf, F., White, H., Leimberger, J.D., Henis, M., Edwards, S., Zelenkofske, S., Sellers, M.A. & Califf, R.M. (2003). Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med 349(20), 18931906.CrossRefGoogle ScholarPubMed
Pitt, B., Remme, W., Zannad, F., Neaton, J., Martinez, F., Roniker, B., Bittman, R., Hurley, S., Kleiman, J. & Gatlin, M. (2003). Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 348(14), 13091321.CrossRefGoogle ScholarPubMed
Pitt, B., Zannad, F., Remme, W.J., Cody, R., Castaigne, A., Perez, A., Palensky, J. & Wittes, J. (1999). The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341(10), 709717.CrossRefGoogle ScholarPubMed
Ponta, H., Sherman, L. & Herrlich, P.A. (2003). CD44: From adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4(1), 3345.CrossRefGoogle ScholarPubMed
Porter, K.E. & Turner, N.A. (2009). Cardiac fibroblasts: At the heart of myocardial remodeling. Pharmacol Ther 123(2), 255278.CrossRefGoogle ScholarPubMed
Porter, K.E., Turner, N.A., O'Regan, D.J. & Ball, S.G. (2004a). Tumor necrosis factor alpha induces human atrial myofibroblast proliferation, invasion and MMP-9 secretion: Inhibition by simvastatin. Cardiovasc Res 64(3), 507515.CrossRefGoogle ScholarPubMed
Porter, K.E., Turner, N.A., O'Regan, D.J., Balmforth, A.J. & Ball, S.G. (2004b). Simvastatin reduces human atrial myofibroblast proliferation independently of cholesterol lowering via inhibition of RhoA. Cardiovasc Res 61(4), 745755.CrossRefGoogle ScholarPubMed
Post, S.R., Hammond, H.K. & Insel, P.A. (1999). Beta-adrenergic receptors and receptor signaling in heart failure. Annu Rev Pharmacol Toxicol 39, 343360.CrossRefGoogle ScholarPubMed
Potts, J.D. & Runyan, R.B. (1989). Epithelial-mesenchymal cell transformation in the embryonic heart can be mediated, in part, by transforming growth factor beta. Dev Biol 134(2), 392401.CrossRefGoogle ScholarPubMed
Prockop, D.J. & Kivirikko, K.I. (1995). Collagens: Molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64, 403434.CrossRefGoogle ScholarPubMed
Rehsia, N.S. & Dhalla, N.S. (2010). Potential of endothelin-1 and vasopressin antagonists for the treatment of congestive heart failure. Heart Fail Rev 15(1), 85101.CrossRefGoogle ScholarPubMed
Ren, G., Michael, L.H., Entman, M.L. & Frangogiannis, N.G. (2002). Morphological characteristics of the microvasculature in healing myocardial infarcts. J Histochem Cytochem 50(1), 7179.CrossRefGoogle ScholarPubMed
Rodriguez-Pascual, F., Busnadiego, O., Lagares, D. & Lamas, S. (2011). Role of endothelin in the cardiovascular system. Pharmacol Res 63(6), 463472.CrossRefGoogle ScholarPubMed
Roger, V.L., Go, A.S., Lloyd-Jones, D.M., Adams, R.J., Berry, J.D., Brown, T.M., Carnethon, M.R., Dai, S., de Simone, G., Ford, E.S., Fox, C.S., Fullerton, H.J., Gillespie, C., Greenlund, K.J., Hailpern, S.M., Heit, J.A., Ho, P.M., Howard, V.J., Kissela, B.M., Kittner, S.J., Lackland, D.T., Lichtman, J.H., Lisabeth, L.D., Makuc, D.M., Marcus, G.M., Marelli, A., Matchar, D.B., McDermott, M.M., Meigs, J.B., Moy, C.S., Mozaffarian, D., Mussolino, M.E., Nichol, G., Paynter, N.P., Rosamond, W.D., Sorlie, P.D., Stafford, R.S., Turan, T.N., Turner, M.B., Wong, N.D. & Wylie-Rosett, J. (2011). Heart disease and stroke statistics—2011 update: A report from the American Heart Association. Circulation 123(4), e18e209.CrossRefGoogle ScholarPubMed
Rohr, S. (2009). Myofibroblasts in diseased hearts: New players in cardiac arrhythmias? Heart Rhythm 6(6), 848856.CrossRefGoogle ScholarPubMed
Rosenkranz, S. (2004). TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc Res 63(3), 423432.CrossRefGoogle ScholarPubMed
Samuel, C.S., Cendrawan, S., Gao, X.M., Ming, Z., Zhao, C., Kiriazis, H., Xu, Q., Tregear, G.W., Bathgate, R.A. & Du, X.J. (2011). Relaxin remodels fibrotic healing following myocardial infarction. Lab Invest 91(5), 675690.CrossRefGoogle ScholarPubMed
Schieffer, B., Wirger, A., Meybrunn, M., Seitz, S., Holtz, J., Riede, U.N. & Drexler, H. (1994). Comparative effects of chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade on cardiac remodeling after myocardial infarction in the rat. Circulation 89(5), 22732282.CrossRefGoogle ScholarPubMed
Serini, G., Bochaton-Piallat, M.L., Ropraz, P., Geinoz, A., Borsi, L., Zardi, L. & Gabbiani, G. (1998). The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol 142(3), 873881.CrossRefGoogle ScholarPubMed
Shiroshita-Takeshita, A., Brundel, B.J., Burstein, B., Leung, T.K., Mitamura, H., Ogawa, S. & Nattel, S. (2007). Effects of simvastatin on the development of the atrial fibrillation substrate in dogs with congestive heart failure. Cardiovasc Res 74(1), 7584.CrossRefGoogle ScholarPubMed
Shi-wen, X., Kennedy, L., Renzoni, E.A., Bou-Gharios, G., du Bois, R.M., Black, C.M., Denton, C.P., Abraham, D.J. & Leask, A. (2007). Endothelin is a downstream mediator of profibrotic responses to transforming growth factor beta in human lung fibroblasts. Arthritis Rheum 56(12), 41894194.CrossRefGoogle ScholarPubMed
Siwik, D.A., Chang, D.L. & Colucci, W.S. (2000). Interleukin-1beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ Res 86(12), 12591265.CrossRefGoogle ScholarPubMed
SOLVD Investigators. (1991). Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD Investigators. N Engl J Med 325(5), 293302.CrossRefGoogle Scholar
Soonpaa, M.H., Daud, A.I., Koh, G.Y., Klug, M.G., Kim, K.K., Wang, H. & Field, L.J. (1995). Potential approaches for myocardial regeneration. Ann NY Acad Sci 752, 446454.CrossRefGoogle ScholarPubMed
Sorrell, J.M. & Caplan, A.I. (2004). Fibroblast heterogeneity: More than skin deep. J Cell Sci 117(Pt 5), 667675.CrossRefGoogle ScholarPubMed
Souders, C.A., Bowers, S.L. & Baudino, T.A. (2009). Cardiac fibroblast: The renaissance cell. Circ Res 105(12), 11641176.CrossRefGoogle ScholarPubMed
Strieter, R.M., Keeley, E.C., Burdick, M.D. & Mehrad, B. (2009). The role of circulating mesenchymal progenitor cells, fibrocytes, in promoting pulmonary fibrosis. Trans Am Clin Climatol Assoc 120, 4959.Google ScholarPubMed
Sumimoto, H., Miyano, K. & Takeya, R. (2005). Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochem Biophys Res Commun 338(1), 677686.CrossRefGoogle ScholarPubMed
Sun, Y. & Weber, K.T. (1996). Angiotensin converting enzyme and myofibroblasts during tissue repair in the rat heart. J Mol Cell Cardiol 28(5), 851858.CrossRefGoogle ScholarPubMed
Sun, Y., Zhang, J.Q., Zhang, J. & Ramires, F.J. (1998). Angiotensin II, transforming growth factor-beta1 and repair in the infarcted heart. J Mol Cell Cardiol 30(8), 15591569.CrossRefGoogle ScholarPubMed
Tan, S.M., Zhang, Y., Connelly, K.A., Gilbert, R.E. & Kelly, D.J. (2010). Targeted inhibition of activin receptor-like kinase 5 signaling attenuates cardiac dysfunction following myocardial infarction. Am J Physiol Heart Circ Physiol 298(5), H1415H1425.CrossRefGoogle ScholarPubMed
Taylor, K., Patten, R.D., Smith, J.J., Aronovitz, M.J., Wight, J., Salomon, R.N. & Konstam, M.A. (1998). Divergent effects of angiotensin-converting enzyme inhibition and angiotensin II-receptor antagonism on myocardial cellular proliferation and collagen deposition after myocardial infarction in rats. J Cardiovasc Pharmacol 31(5), 654660.CrossRefGoogle ScholarPubMed
Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., Galuppo, P., Just, S., Rottbauer, W., Frantz, S., Castoldi, M., Soutschek, J., Koteliansky, V., Rosenwald, A., Basson, M.A., Licht, J.D., Pena, J.T., Rouhanifard, S.H., Muckenthaler, M.U., Tuschl, T., Martin, G.R., Bauersachs, J. & Engelhardt, S. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456(7224), 980984.CrossRefGoogle ScholarPubMed
Tomasek, J.J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R.A. (2002). Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3(5), 349363.CrossRefGoogle ScholarPubMed
Trueblood, N.A., Xie, Z., Communal, C., Sam, F., Ngoy, S., Liaw, L., Jenkins, A.W., Wang, J., Sawyer, D.B., Bing, O.H., Apstein, C.S., Colucci, W.S. & Singh, K. (2001). Exaggerated left ventricular dilation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin. Circ Res 88(10), 10801087.CrossRefGoogle ScholarPubMed
Turner, N.A., Das, A., Warburton, P., O'Regan, D.J., Ball, S.G. & Porter, K.E. (2009). Interleukin-1alpha stimulates proinflammatory cytokine expression in human cardiac myofibroblasts. Am J Physiol Heart Circ Physiol 297(3), H1117H1127.CrossRefGoogle ScholarPubMed
Turner, N.A., Porter, K.E., Smith, W.H., White, H.L., Ball, S.G. & Balmforth, A.J. (2003). Chronic beta2-adrenergic receptor stimulation increases proliferation of human cardiac fibroblasts via an autocrine mechanism. Cardiovasc Res 57(3), 784792.CrossRefGoogle ScholarPubMed
Turner, N.A., Warburton, P., O'Regan, D.J., Ball, S.G. & Porter, K.E. (2010). Modulatory effect of interleukin-1alpha on expression of structural matrix proteins, MMPs and TIMPs in human cardiac myofibroblasts: Role of p38 MAP kinase. Matrix Biol 29(7), 613620.CrossRefGoogle ScholarPubMed
van den Borne, S.W., Cleutjens, J.P., Hanemaaijer, R., Creemers, E.E., Smits, J.F., Daemen, M.J. & Blankesteijn, W.M. (2009a). Increased matrix metalloproteinase-8 and -9 activity in patients with infarct rupture after myocardial infarction. Cardiovasc Pathol 18(1), 3743.CrossRefGoogle ScholarPubMed
van den Borne, S.W., Diez, J., Blankesteijn, W.M., Verjans, J., Hofstra, L. & Narula, J. (2010). Myocardial remodeling after infarction: The role of myofibroblasts. Nat Rev Cardiol 7(1), 3037.CrossRefGoogle ScholarPubMed
van den Borne, S.W., Isobe, S., Verjans, J.W., Petrov, A., Lovhaug, D., Li, P., Zandbergen, H.R., Ni, Y., Frederik, P., Zhou, J., Arbo, B., Rogstad, A., Cuthbertson, A., Chettibi, S., Reutelingsperger, C., Blankesteijn, W.M., Smits, J.F., Daemen, M.J., Zannad, F., Vannan, M.A., Narula, N., Pitt, B., Hofstra, L. & Narula, J. (2008). Molecular imaging of interstitial alterations in remodeling myocardium after myocardial infarction. J Am Coll Cardiol 52(24), 20172028.CrossRefGoogle ScholarPubMed
van den Borne, S.W., van de Schans, V.A., Strzelecka, A.E., Vervoort-Peters, H.T., Lijnen, P.M., Cleutjens, J.P., Smits, J.F., Daemen, M.J., Janssen, B.J. & Blankesteijn, W.M. (2009b). Mouse strain determines the outcome of wound healing after myocardial infarction. Cardiovasc Res 84(2), 273282.CrossRefGoogle ScholarPubMed
van der Laan, A.M., Piek, J.J. & van Royen, N. (2009). Targeting angiogenesis to restore the microcirculation after reperfused MI. Nat Rev Cardiol 6(8), 515523.CrossRefGoogle ScholarPubMed
van de Schans, V.A., Smits, J.F. & Blankesteijn, W.M. (2008). The Wnt/frizzled pathway in cardiovascular development and disease: Friend or foe? Eur J Pharmacol 585(2-3), 338345.CrossRefGoogle ScholarPubMed
van Rooij, E., Sutherland, L.B., Thatcher, J.E., DiMaio, J.M., Naseem, R.H., Marshall, W.S., Hill, J.A. & Olson, E.N. (2008). Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA 105(35), 1302713032.CrossRefGoogle ScholarPubMed
Wang, J., Zohar, R. & McCulloch, C.A. (2006). Multiple roles of alpha-smooth muscle actin in mechanotransduction. Exp Cell Res 312(3), 205214.CrossRefGoogle ScholarPubMed
Webber, J., Jenkins, R.H., Meran, S., Phillips, A. & Steadman, R. (2009). Modulation of TGFbeta1-dependent myofibroblast differentiation by hyaluronan. Am J Pathol 175(1), 148160.CrossRefGoogle ScholarPubMed
Wexler, D.J., Chen, J., Smith, G.L., Radford, M.J., Yaari, S., Bradford, W.D. & Krumholz, H.M. (2001). Predictors of costs of caring for elderly patients discharged with heart failure. Am Heart J 142(2), 350357.CrossRefGoogle ScholarPubMed
WHO. (2011). WHO Fact Sheet N°317—Cardiovascular diseases (CVDs). Available at www.who.int/mediacentre/factsheets/fs317/en/24-05-11.Google Scholar
Widyantoro, B., Emoto, N., Nakayama, K., Anggrahini, D.W., Adiarto, S., Iwasa, N., Yagi, K., Miyagawa, K., Rikitake, Y., Suzuki, T., Kisanuki, Y.Y., Yanagisawa, M. & Hirata, K. (2010). Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation 121(22), 24072418.CrossRefGoogle ScholarPubMed
Willems, I.E., Havenith, M.G., De Mey, J.G. & Daemen, M.J. (1994). The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol 145(4), 868875.Google ScholarPubMed
Yu, C.M., Tipoe, G.L., Wing-Hon Lai, K. & Lau, C.P. (2001). Effects of combination of angiotensin-converting enzyme inhibitor and angiotensin receptor antagonist on inflammatory cellular infiltration and myocardial interstitial fibrosis after acute myocardial infarction. J Am Coll Cardiol 38(4), 12071215.CrossRefGoogle ScholarPubMed
Zak, R. (1974). Development and proliferative capacity of cardiac muscle cells. Circ Res 35(2), Suppl II:1726.Google ScholarPubMed
Zeisberg, E.M., Tarnavski, O., Zeisberg, M., Dorfman, A.L., McMullen, J.R., Gustafsson, E., Chandraker, A., Yuan, X., Pu, W.T., Roberts, A.B., Neilson, E.G., Sayegh, M.H., Izumo, S. & Kalluri, R. (2007). Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13(8), 952961.CrossRefGoogle ScholarPubMed
Zhang, C. (2008). MicroRNomics: A newly emerging approach for disease biology. Physiol Genomics 33(2), 139147.CrossRefGoogle ScholarPubMed
Zhang, Y., Kanter, E.M., Laing, J.G., Aprhys, C., Johns, D.C., Kardami, E. & Yamada, K.A. (2008). Connexin43 expression levels influence intercellular coupling and cell proliferation of native murine cardiac fibroblasts. Cell Commun Adhes 15(3), 289303.CrossRefGoogle ScholarPubMed
Zhou, G., Kandala, J.C., Tyagi, S.C., Katwa, L.C. & Weber, K.T. (1996). Effects of angiotensin II and aldosterone on collagen gene expression and protein turnover in cardiac fibroblasts. Mol Cell Biochem 154(2), 171178.CrossRefGoogle ScholarPubMed
Zymek, P., Nah, D.Y., Bujak, M., Ren, G., Koerting, A., Leucker, T., Huebener, P., Taffet, G., Entman, M. & Frangogiannis, N.G. (2007). Interleukin-10 is not a critical regulator of infarct healing and left ventricular remodeling. Cardiovasc Res 74(2), 313322.CrossRefGoogle Scholar