Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-27T19:46:16.043Z Has data issue: false hasContentIssue false

Development of multiple-locus variable-number tandem-repeat analysis for rapid genotyping of Ehrlichia ruminantium and its application to infected Amblyomma variegatum collected in heartwater endemic areas in Uganda

Published online by Cambridge University Press:  05 October 2011

RYO NAKAO
Affiliation:
Department of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
LIAM J. MORRISON
Affiliation:
Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 464 Bearsden Road, Glasgow G61 1QH, UK
LIJIA ZHOU
Affiliation:
Department of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
JOSEPH W. MAGONA
Affiliation:
Department of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan National Livestock Resources Research Institute (NaLIRRI), P.O. Box 1026, Tororo, Uganda
FRANS JONGEJAN
Affiliation:
Utrecht Centre for Tick-borne Diseases (UCTD), Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, The Netherlands Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
CHIHIRO SUGIMOTO*
Affiliation:
Department of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
*
*Corresponding author: Research Center for Zoonosis Control, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan. Tel: +81 11 706 5297. Fax: +81 11 706 7370. E-mail: sugimoto@czc.hokudai.ac.jp

Summary

The rickettsial bacterium Ehrlichia ruminantium is the causative agent of heartwater, a serious tick-borne disease in ruminants. The genetic diversity of organisms in the field will have implications for cross-protective capacities of any vaccine developed, and for an effective vaccine design strategy proper genotyping and understanding of existing genetic diversity in the field is necessary. We searched for variable-number tandem-repeat (VNTR) loci for use in a multi-locus VNTR analysis (MLVA). Sequencing analysis of 30 potential VNTRs using a panel of 17 reference strains from geographically diverse origins identified 12 VNTRs with allelic profiles differing between strains. Application of MLVA to 38 E. ruminantium-infected Amblyomma variegatum collected from indigenous cattle in 6 different districts of Uganda identified 21 MLVA types. The discriminatory power of MLVA was greater than that of map1 PCR-restriction fragment length polymorphism analysis, with which only 6 genotypes were obtained. The high discriminatory power as well as cost- effective performance of MLVA provide the potential for this technique to be applied in the future with respect to optimizing vaccine trials by identifying local strain diversity, and also raise the possibility of exploring the association between E. ruminantium genotypes and phenotypes such as pathological outcome in the ruminant host.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adakal, H., Gavotte, L., Stachurski, F., Konkobo, M., Henri, H., Zoungrana, S., Huber, K., Vachiery, N., Martinez, D., Morand, S. and Frutos, R. (2010 a). Clonal origin of emerging populations of Ehrlichia ruminantium in Burkina Faso. Infection, Genetics and Evolution 10, 903912. doi: S1567-1348(10)00134-6.CrossRefGoogle ScholarPubMed
Adakal, H., Meyer, D., Carasco-Lacombe, C., Pinarello, V., Allègre, F., Huber, K., Stachurski, F., Morand, S., Martinez, D., Lefrançois, T., Vachiery, N. and Frutos, R. (2009). MLST scheme of Ehrlichia ruminantium: genomic stasis and recombination in strains from Burkina-Faso. Infection, Genetics and Evolution 9, 13201328. doi: S1567-1348(09)00187-7.CrossRefGoogle ScholarPubMed
Adakal, H., Stachurski, F., Konkobo, M., Zoungrana, S., Meyer, D., Pinarello, V., Aprelon, R., Marcelino, I., Alves, P., Martinez, D., Lefrancois, T. and Vachiéry, N. (2010 b). Efficiency of inactivated vaccines against heartwater in Burkina Faso: impact of Ehrlichia ruminantium genetic diversity. Vaccine 28, 45734580. doi: S0264-410X(10)00625-0.CrossRefGoogle ScholarPubMed
Allsopp, M. and Allsopp, B. (2007). Extensive genetic recombination occurs in the field between different genotypes of Ehrlichia ruminantium. Veterinary Microbiology 124, 5865. doi: S0378-1135(07)00149-6.CrossRefGoogle ScholarPubMed
Allsopp, M., Louw, M. and Meyer, E. (2005). Ehrlichia ruminantium: an emerging human pathogen? Annals of the New York Academy of Sciences 1063, 358360. doi: 1063/1/358.CrossRefGoogle ScholarPubMed
Allsopp, M., van Strijp, M. F., Faber, E., Josemans, A. I. and Allsopp, B. A. (2007). Ehrlichia ruminantium variants which do not cause heartwater found in South Africa. Veterinary Microbiology 120, 158166. doi: 10.1016/j.vetmic.2006.10.026.CrossRefGoogle Scholar
Allsopp, M. T., Dorfling, C. M., Maillard, J. C., Bensaid, A., Haydon, D. T., van Heerden, H. and Allsopp, B. A. (2001). Ehrlichia ruminantium major antigenic protein gene (map1) variants are not geographically constrained and show no evidence of having evolved under positive selection pressure. Journal of Clinical Microbiology 39, 42004203. doi: 10.1128/JCM.39.11.4200-4203.2001.CrossRefGoogle Scholar
Barbet, A., Byrom, B. and Mahan, S. (2009). Diversity of Ehrlichia ruminantium major antigenic protein 1–2 in field isolates and infected sheep. Infection and Immunity 77, 23042310. doi: IAI.01409-08.CrossRefGoogle ScholarPubMed
Bell-Sakyi, L., Koney, E. B. M., Dogbey, O., Abbam, J. A. and Aning, K. G. (1997). Isolation and in vitro cultivation in Ghana of Cowdria ruminantium, the causative agent of heartwater. Proceedings of the W.A.C.V.A/G.V.M.A. Conference, Ministry of Food and Agriculture, Accra, 4651.Google Scholar
Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research 27, 573580. doi: gkc131.CrossRefGoogle Scholar
Burridge, M., Simmons, L., Peter, T. and Mahan, S. (2002). Increasing risks of introduction of heartwater onto the American mainland associated with animal movements. Annals of the New York Academy of Sciences 969, 269274.CrossRefGoogle ScholarPubMed
Byrom, B., Yunker, C., Donovan, P. and Smith, G. (1991). In vitro isolation of Cowdria ruminantium from plasma of infected ruminants. Veterinary Microbiology 26, 263268. doi: 0378-1135(91)90019-C.CrossRefGoogle ScholarPubMed
Collins, N., Liebenberg, J., de Villiers, E., Brayton, K., Louw, E., Pretorius, A., Faber, F., van Heerden, H., Josemans, A., van Kleef, M., Steyn, H., van Strijp, M., Zweygarth, E., Jongejan, F., Maillard, J., Berthier, D., Botha, M., Joubert, F., Corton, C., Thomson, N., Allsopp, M. and Allsopp, B. (2005). The genome of the heartwater agent Ehrlichia ruminantium contains multiple tandem repeats of actively variable copy number. Proceedings of the National Academy of Sciences, USA 102, 838843. doi: 0406633102.CrossRefGoogle ScholarPubMed
Du Plessis, J. (1985). A method for determining the Cowdria ruminantium infection rate of Amblyomma hebraeum: effects in mice injected with tick homogenates. Onderstepoort Journal of Veterinary Research 52, 5561.Google ScholarPubMed
Du Plessis, J. L., van Gas, L., Olivier, J. A. and Bezuidenhout, J. D. (1989). The heterogenicity of Cowdria ruminantium stocks: cross-immunity and serology in sheep and pathogenicity to mice. Onderstepoort Journal of Veterinary Research 56, 195201.Google ScholarPubMed
Faburay, B., Geysen, D., Ceesay, A., Marcelino, I., Alves, P., Taoufik, A., Postigo, M., Bell-Sakyi, L. and Jongejan, F. (2007 a). Immunisation of sheep against heartwater in The Gambia using inactivated and attenuated Ehrlichia ruminantium vaccines. Vaccine 25, 79397947. doi: S0264-410X(07)01018-3.CrossRefGoogle ScholarPubMed
Faburay, B., Geysen, D., Munstermann, S., Taoufik, A., Postigo, M. and Jongejan, F. (2007 b). Molecular detection of Ehrlichia ruminantium infection in Amblyomma variegatum ticks in The Gambia. Experimental and Applied Acarology 42, 6174. doi: 10.1007/s10493-007-9073-2.CrossRefGoogle ScholarPubMed
Faburay, B., Jongejan, F., Taoufik, A., Ceesay, A. and Geysen, D. (2008). Genetic diversity of Ehrlichia ruminantium in Amblyomma variegatum ticks and small ruminants in The Gambia determined by restriction fragment profile analysis. Veterinary Microbiology 126, 189199. doi: S0378-1135(07)00309-4.CrossRefGoogle ScholarPubMed
Faburay, B., Munstermann, S., Geysen, D., Bell-Sakyi, L., Ceesay, A., Bodaan, C. and Jongejan, F. (2005). Point seroprevalence survey of Ehrlichia ruminantium infection in small ruminants in The Gambia. Clinical and Vaccine Immunology 12, 508512. doi: 12/4/508.CrossRefGoogle ScholarPubMed
Frutos, R., Viari, A., Ferraz, C., Morgat, A., Eychenié, S., Kandassamy, Y., Chantal, I., Bensaid, A., Coissac, E., Vachiery, N., Demaille, J. and Martinez, D. (2006). Comparative genomic analysis of three strains of Ehrlichia ruminantium reveals an active process of genome size plasticity. Journal of Bacteriology 188, 25332542. doi: 188/7/2533.CrossRefGoogle ScholarPubMed
Haig, D. A. (1952). Note on the use of the white mouse for the transport of strains of heartwater. Journal of the South African Veterinary Medical Association 23, 167170.Google Scholar
Hughes, A. and French, J. (2007). Homologous recombination and the pattern of nucleotide substitution in Ehrlichia ruminantium. Gene 387, 3137. doi: S0378-1119(06)00528-2.CrossRefGoogle ScholarPubMed
Ilemobade, A. A. and Blotkamp, C. (1978). Heartwater in Nigeria. II. The isolation of Cowdria ruminantium from live and dead animals and the importance of routes of inoculation. Tropical Animal Health and Production 10, 3944.CrossRefGoogle ScholarPubMed
Jongejan, F. (1991). Protective immunity to heartwater (Cowdria ruminantium infection) is acquired after vaccination with in vitro-attenuated rickettsiae. Infection and Immunity 59, 729731.CrossRefGoogle ScholarPubMed
Jongejan, F., Morzaria, S. P., Omer, A. S. and Hashim, M. A. (1984). Isolation and transmission of heartwater (Cowdria ruminantium infection) in Blue Nile Province. Sudan Journal of Veterinary Research 8, 141145.Google ScholarPubMed
Jongejan, F., Uilenberg, G., Franssen, F., Gueye, A. and Nieuwenhuijs, J. (1988). Antigenic differences between stocks of Cowdria ruminantium. Research in Veterinary Science 44, 186189.CrossRefGoogle ScholarPubMed
Jongejan, F., van Winkelhoff, A. and Uilenberg, G. (1980). Cowdria ruminantium (Rickettsiales) in primary goat kidney cell cultures. Research in Veterinary Science 29, 392–393.CrossRefGoogle ScholarPubMed
Kocan, K., Morzaria, S., Voigt, W., Kiarie, J. and Irvin, A. (1987). Demonstration of colonies of Cowdria ruminantium in midgut epithelial cells of Amblyomma variegatum. American Journal of Veterinary Research 48, 356360.Google ScholarPubMed
Lindstedt, B. (2005). Multiple-locus variable number tandem repeats analysis for genetic fingerprinting of pathogenic bacteria. Electrophoresis 26, 25672582. doi: 10.1002/elps.200500096.CrossRefGoogle ScholarPubMed
Louw, M., Allsopp, M. and Meyer, E. (2005). Ehrlichia ruminantium, an emerging human pathogen – a further report. South African Medical Journal 95, 948, 950.Google ScholarPubMed
MacKenzie, P. K. I. and van Rooyen, R. F. (1981). The isolation and culture of Cowdria ruminantium in albino mice. Proceedings of an international conference. Tick Research Unit, Rhodes University, Grahamstown, South Africa, pp. 3339.Google Scholar
Mahan, S. M., Andrew, H. R., Tebele, N., Burridge, M. J. and Barbet, A. F. (1995). Immunisation of sheep against heartwater with inactivated Cowdria ruminantium. Research in Veterinary Science 58, 4649. doi: 0034-5288(95)90087-X.CrossRefGoogle ScholarPubMed
Mahan, S., Smith, G., Kumbula, D., Burridge, M. and Barbet, A. (2001). Reduction in mortality from heartwater in cattle, sheep and goats exposed to field challenge using an inactivated vaccine. Veterinary Parasitology 97, 295308. doi: S030440170100437X.CrossRefGoogle ScholarPubMed
Marsh, J., O'Leary, M., Shutt, K., Sambol, S., Johnson, S., Gerding, D. and Harrison, L. (2010). Multilocus variable-number tandem-repeat analysis and multilocus sequence typing reveal genetic relationships among Clostridium difficile isolates genotyped by restriction endonuclease analysis. Journal of Clinical Microbiology 48, 412418. doi: JCM.01315-09.CrossRefGoogle ScholarPubMed
Martinez, D., Maillard, J. C., Coisne, S., Sheikboudou, C. and Bensaid, A. (1994). Protection of goats against heartwater acquired by immunisation with inactivated elementary bodies of Cowdria ruminantium. Veterinary Immunology and Immunopathology 41, 153163.CrossRefGoogle ScholarPubMed
Martinez, D., Vachiéry, N., Stachurski, F., Kandassamy, Y., Raliniaina, M., Aprelon, R. and Gueye, A. (2004). Nested PCR for detection and genotyping of Ehrlichia ruminantium: use in genetic diversity analysis. Annals of the New York Academy of Sciences 1026, 106113. doi: 1026/1/106.CrossRefGoogle ScholarPubMed
Mukhebi, A., Chamboko, T., O'Callaghan, C., Peter, T., Kruska, R., Medley, G., Mahan, S. and Perry, B. (1999). An assessment of the economic impact of heartwater (Cowdria ruminantium infection) and its control in Zimbabwe. Preventive Veterinary Medicine 39, 173189. doi: S0167-5877(98)00143-3.CrossRefGoogle ScholarPubMed
Nakao, R., Magona, J. W., Zhou, L., Jongejan, F. and Sugimoto, C. (2011). Multi-locus sequence typing of Ehrlichia ruminantium strains from geographically diverse origins and collected in Amblyomma variegatum from Uganda. Parasites & Vectors 4, 137. doi: 1756-3305-4-137.CrossRefGoogle ScholarPubMed
Nakao, R., Stromdahl, E. Y., Magona, J. W., Faburay, B., Namangala, B., Malele, I., Inoue, N., Geysen, D., Kajino, K., Jongejan, F. and Sugimoto, C. (2010). Development of loop-mediated isothermal amplification (LAMP) assays for rapid detection of Ehrlichia ruminantium. BMC Microbiology 10, 296. doi: 1471-2180-10-296.CrossRefGoogle ScholarPubMed
Oberem, P. T. and Bezuidenhout, J. D. (1987). The production of heartwater vaccine. Onderstepoort Journal of Veterinary Research 54, 485488.Google ScholarPubMed
Octavia, S. and Lan, R. (2009). Multiple-locus variable-number tandem-repeat analysis of Salmonella enterica serovar Typhi. Journal of Clinical Microbiology 47, 23692376. doi: JCM.00223-09.CrossRefGoogle ScholarPubMed
Page, R. D. (1996). TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12, 357358.Google ScholarPubMed
Peakall, R. and Smouse, P. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288295.CrossRefGoogle Scholar
Pretorius, A., Liebenberg, J., Louw, E., Collins, N. and Allsopp, B. (2010). Studies of a polymorphic Ehrlichia ruminantium gene for use as a component of a recombinant vaccine against heartwater. Vaccine 28, 35313539. doi: S0264-410X(10)00353-1.CrossRefGoogle ScholarPubMed
Pretorius, A., van Kleef, M., Collins, N., Tshikudo, N., Louw, E., Faber, F., van Strijp, M. and Allsopp, B. (2008). A heterologous prime/boost immunisation strategy protects against virulent E. ruminantium Welgevonden needle challenge but not against tick challenge. Vaccine 26, 43634371. doi: S0264-410X(08)00720-2.CrossRefGoogle Scholar
Raliniaina, M., Meyer, D. F., Pinarello, V., Sheikboudou, C., Emboulé, L., Kandassamy, Y., Adakal, H., Stachurski, F., Martinez, D., Lefrançois, T. and Vachiéry, N. (2010). Mining the genetic diversity of Ehrlichia ruminantium using map genes family. Veterinary Parasitology 167, 187195. doi: S0304-4017(09)00553-6.CrossRefGoogle ScholarPubMed
Reddy, G. R., Sulsona, C. R., Harrison, R. H., Mahan, S. M., Burridge, M. J. and Barbet, A. F. (1996). Sequence heterogeneity of the major antigenic protein 1 genes from Cowdria ruminantium isolates from different geographical areas. Clinical and Diagnostic Laboratory Immunology 3, 417422.CrossRefGoogle ScholarPubMed
Uilenberg, G., Camus, E. and Barré, N. (1985). [A strain of Cowdria ruminantium isolated in Guadeloupe (French West Indies)]. Revue d Elevage et de Medecine Veterinaire des Pays Tropicaux 38, 3442.Google ScholarPubMed
Uilenberg, G., Corten, J. and Dwinger, R. (1982). Heartwater (Cowdria ruminantium infection) on São Tomé. Veterinary Quarterly 4, 106107.CrossRefGoogle ScholarPubMed
Uilenberg, G., Zivković, D., Dwinger, R. H., ter Huurne, A. A. and Perié, N. M. (1983). Cross immunity between strains of Cowdria ruminantium. Research in Veterinary Science 35, 200205.CrossRefGoogle ScholarPubMed
Vachiéry, N., Raliniaina, M., Stachurski, F., Adakal, H., Molia, S., Lefrançois, T. and Martinez, D. (2006). Understanding the mechanisms of transmission of Ehrlichia ruminantium and its influence on the structure of pathogen populations in the field. Annals of the New York Academy of Sciences 1078, 495497. doi: 1078/1/495.CrossRefGoogle ScholarPubMed
Valdezate, S., Navarro, A., Villalón, P., Carrasco, G. and Saéz-Nieto, J. (2010). Epidemiological and phylogenetic analysis of Spanish human Brucella melitensis strains by multiple-locus variable-number tandem-repeat typing, hypervariable octameric oligonucleotide fingerprinting, and rpoB typing. Journal of Clinical Microbiology 48, 27342740. doi: JCM.00533-10.CrossRefGoogle ScholarPubMed
van Belkum, A. (2007). Tracing isolates of bacterial species by multilocus variable number of tandem repeat analysis (MLVA). FEMS Immunology and Medical Microbiology 49, 2227. doi: FIM173.CrossRefGoogle ScholarPubMed
van Heerden, H., Steyn, H., Allsopp, M., Zweygarth, E., Josemans, A. and Allsopp, B. (2004). Characterization of the pCS20 region of different Ehrlichia ruminantium isolates. Veterinary Microbiology 101, 279291. doi: S037811350400104X.CrossRefGoogle ScholarPubMed
van Winkelhoff, A. J. and Uilenberg, G. (1981). Heartwater: cross-immunity studies with strains of Cowdria ruminantium isolated in West and South Africa. Tropical Animal Health and Production 13, 160164.CrossRefGoogle ScholarPubMed
Zweygarth, E., Josemans, A., van Strijp, M., Lopez-Rebollar, L., van Kleef, M. and Allsopp, B. (2005). An attenuated Ehrlichia ruminantium (Welgevonden stock) vaccine protects small ruminants against virulent heartwater challenge. Vaccine 23, 16951702. doi: S0264-410X(04)00735-2.CrossRefGoogle ScholarPubMed
Supplementary material: File

Nakao Supplementary Material

Nakao Supplementary Material

Download Nakao Supplementary Material(File)
File 121.9 KB