Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-29T00:11:59.727Z Has data issue: false hasContentIssue false

Glycosyl ureides in ruminant nutrition

2. In vitro studies on the metabolism of glycosyl ureides and their free component molecules in rumen contents

Published online by Cambridge University Press:  09 March 2007

R. J. Merry
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
R. H. Smith
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
A. B. McAllan
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The fate of glucosyl urea (GU), lactosyl urea (LU) and corresponding mixtures of the free sugars and urea and their degradation products were examined during in vitro incubation of the compounds with rumen contents taken from donor sheep and steers at various stages of adaptation to these compounds.

2. The sugar–urea bond was virtually unattacked in rumen contents from unadapted sheep and steers but generally a slow release of the galactose moiety occurred. After feeding LU or GU to animals for a period of approximately 10 d, the rates of disappearance of both bound urea and sugar had increased, but were still markedly slower than those of the corresponding free sugars and urea. In vitro rates of degradation of both free lactose and urea also increased in response to the feeding of lactose and urea to rumen contentdonor animals.

3. Ammonia accumulation in rument contents when GU or LU were the substrates was notably lower than when equivalent amounts of glucose and urea or lactose and urea were the substrates.

4. Bacterial growth was estimated using an vitro method based on incorporation of 32P into bacterial nucleic acids. Markedly different patterns of bacterial growth were observed depending on whether LU or lactose and urea were the substrates.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1982

References

REFERENCES

Al Attar, A., Evans, R. A. & Axford, R. F. E. (1976). Proc. Nutr. Soc. 35, 108A.Google Scholar
Al-Rabbat, M. F., Baldwin, R. L. & Weir, W. C. (1971). J. Dairy Sci. 54, 1150.CrossRefGoogle Scholar
Bartley, E E. & Deyoe, C. W. (1977). In Recent Advances in Animal Nutrition, p. 50 [Haresign, W. and Lewis, D., editors]. London: Butterworths.Google Scholar
Bucholtz, H. F. & Bergen, W. G. (1973). Appl. Microbiol. 25, 504.CrossRefGoogle Scholar
Chalupa, W. (1968). J. Anim. Sci. 27, 207.CrossRefGoogle Scholar
Cheng, K.-J., Akin, D. E. & Costerton, J. W. (1977). Fedn Proc. Fedn Am. Socs exp. Biol. 36, 193.Google Scholar
Church, D. C. (1966). Digestive Physiology and Nutrition of Ruminants, vol. 1. Oregon: Oxford Press Inc.Google Scholar
Coleman, G. S. (1968). J. gen. Microbiol. 54, 83.CrossRefGoogle Scholar
Coleman, G. S. (1975). In Digestion and Metabolism in the Ruminant, p. 149 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale: University of New England Publishing Unit.Google Scholar
Coombe, N. B. (1972). Carbohydrate digestion and absorption in the pre-ruminant calf. PhD Thesis, University of Reading.Google Scholar
Demeyer, D. I. & Van Nevel, C. J. (1978). Revue Agric. Brux. 31, 1094.Google Scholar
Fonnesbeck, P. V., Kearl, L. C. & Harris, L. E. (1975). J. Anim. Sci. 40, 1150.CrossRefGoogle Scholar
Forrest, W. W. & Walker, D. J. (1971). Adv. microbiol. Physiol. 5, 213.CrossRefGoogle Scholar
Galyamin, N. L. (1975). Zhivotnovodstvo 9, 30.Google Scholar
Goodman, I. (1958). Adv. Carbohydr. chem. 13, 215.Google Scholar
Gregory, M. E. (1954). Br. J. Nutr. 8, 340.CrossRefGoogle Scholar
Hungate, R. E. (1966). The Rumen and its Microbes. New York: Academic Press.Google Scholar
Kaufmann, W., Hagemeister, H. & Dirksen, G. (1980). In Digestive Physiology and Metabolism in Ruminants, p. 587 [Ruckebusch, Y. and Thivend, P. editors]. Lancaster: MTP Press Ltd.CrossRefGoogle Scholar
Kondos, A. C. (1975). J. agric. Sci., Camb. 85, 351.CrossRefGoogle Scholar
Lazdunski, A. & Belaich, J. P. (1972). J. gen. Microbiol. 70, 187.CrossRefGoogle Scholar
McAllan, A. B. & Smith, R. H. (1969). Br. J. Nutr. 23, 671.CrossRefGoogle Scholar
McAllan, A. B. & Smith, R. H. (1974). Br. J. Nutr. 31, 77.CrossRefGoogle Scholar
Merry, R. J. (1980). The use of dietary non-protein nitrogen compounds by the ruminant with particular emphasis on the glycosyl ureides. PhD Thesis, University of Reading.Google Scholar
Merry, R. J., Smith, R. H. & McAllan, A. B. (1979). Ann. Rech. Vét. 10, 314.Google Scholar
Merry, R. J., Smith, R. H. & McAllan, A. B. (1982 a). Br. J. Nutr. 48, 275.CrossRefGoogle Scholar
Merry, R. J., Smith, R. H. & McAllan, A. B. (1982 b). Br. J. Nutr. 48, 305.CrossRefGoogle Scholar
Metzger, V. L., Baker, R. J. & Schingoethe, D. J. (1971). J. Dairy Sci. 54, 48 Abstr.Google Scholar
Milligan, L. P., Worsley, M., Elofson, M., Young, B. A. & Atwal, A. S. (1972). J. Anim. Sci. 34, 89A.Google Scholar
Monod, J. (1947). Growth 11, 223.Google Scholar
Nikolić, J. A., Pavlicević, A., Zeremski, D. & Negovanovic, D. (1980). In Digestive Physiology and Metabolism in Ruminants, p. 603 [Ruckebusch, Y. and Thivend, P., editors]. Lancaster: MTP Press Ltd.CrossRefGoogle Scholar
Oldham, J. D., Buttery, P. J., Swan, H. & Lewis, D. (1977). J. agric. Sci., Camb. 89, 467.CrossRefGoogle Scholar
Phillipson, A. T. & McAnally, R. A. (1942). J. exp. Biol. 19, 199.CrossRefGoogle Scholar
Preston, T. R. (1972). Tracer Studies on Non-Protein Nitrogen for Ruminants, vol. 1, p. 1. Vienna: International Atomic Energy Agency.Google Scholar
Smith, R. H. (1969). J. Dairy Res. 36, 313.CrossRefGoogle Scholar
Smith, R. H. (1979). J. Anim. Sci. 49, 1604.CrossRefGoogle Scholar
Smith, R. H. & McAllan, A. B. (1970). Br. J. Nutr. 24, 545.CrossRefGoogle Scholar
Smith, R. H. & McAllan, A. B. (1971). Automation in Analytical Chemistry (Technicon International Symposium). Basingstoke, Hants: Technicon Instruments Co. Ltd.Google Scholar
Smith, R. H. & McAllan, A. B. (1974). Br. J. Nutr. 31, 27.CrossRefGoogle Scholar
Smith, R. H., McAllan, A. B., Hewitt, D. & Lewis, P. E. (1978). J. agric. Sci., Camb. 90, 557.CrossRefGoogle Scholar
Snedecor, G. W. & Cochran, W. G. (1972). Statistical Methods, 6th ed., pp. 9197. Ames, Iowa: Iowa State University Press.Google Scholar
Stouthamer, A. H. & Bettenhaussen, C. (1973). Biochim. biophys. Acta 301, 53.CrossRefGoogle Scholar
Thompson, J. K. & Hobson, P. N. (1971). J. agric. Sci., Camb. 76, 423.CrossRefGoogle Scholar
Van Nevel, C. J. & Demeyer, D. I. (1977). Br. J. Nutr. 38, 101.CrossRefGoogle Scholar
Walker, D. J. (1968). Appl. Microbiol. 16, 1672.CrossRefGoogle Scholar
Walker, D. M. & Lee, B. A. (1961). J. agric. Sci., Camb. 57, 267.CrossRefGoogle Scholar
Walker, D. J. & Nader, C. J. (1968). Appl. Microbiol. 16, 1124.CrossRefGoogle Scholar