Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T11:49:48.078Z Has data issue: false hasContentIssue false

Diet and habitat definitions for Mexican glyptodonts from Cedral (San Luis Potosí, México) based on stable isotope analysis

Published online by Cambridge University Press:  18 October 2011

VICTOR ADRIÁN PÉREZ-CRESPO*
Affiliation:
Posgrado en Ciencias Biológicas, UNAM, Ciudad Universitaria, Del. Coyoacán, 04150, México, D. F.
JOAQUÍN ARROYO-CABRALES
Affiliation:
Laboratorio de Arqueozoología ‘M. en C. Ticul Álvarez Solórzano’, Subdirección de Laboratorios y Apoyo Académico, INAH, Moneda 16 Col. Centro, 06060, México, D. F.
LUIS M. ALVA-VALDIVIA
Affiliation:
Laboratorio de Paleomagnetismo, Instituto de Geofísica, UNAM, Ciudad Universitaria, Del. Coyoacán, 04150, México, D. F.
PEDRO MORALES-PUENTE
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica S/N, Ciudad Universitaria, Del. Coyoacán, 04150, México, D. F.
EDITH CIENFUEGOS-ALVARADO
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica S/N, Ciudad Universitaria, Del. Coyoacán, 04150, México, D. F.
*
Author for correspondence: vapc79@gmail.com

Abstract

Values for δ13C and δ18O obtained from molar samples from three individuals pertaining to Glyptotherium sp. from Cedral (San Luis Potosí, México) are provided and are utilized to infer general aspects of glyptodont diet and habitat. On average this animal showed a C3/C4 mixed diet, with a high consumption of C4 plants. Comparisons of the δ13CVPDB and δ18OVPDB values for glyptodonts with horses, mastodons, mammoths and tapirs from the same locality show that glyptodonts from Cedral lived in an open habitat.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Álvarez, S. T. & Polaco, O. J. 1982. Restos pleistocénicos de dos especies de Microtus (Rodentia: Muridae), del norte de San Luís Potosí, México. Anales de la Escuela Nacional de Ciencias Biológicas México 26, 4753.Google Scholar
Arroyo-Cabrales, J., Polaco, O. & Johnson, E. 2007. An overview of the Quaternary mammals from México. Courier Forschungsinstitut Senckenber, 259, 191203.Google Scholar
Ayliffe, L. K., Lister, A. M. & Chivas, A. R. 1992. The preservation of glacial-interglacial climatic signatures in the oxygen isotopes of elephant skeletal phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 99, 179–91.Google Scholar
Bravo-Cuevas, V. M., Ortíz-Caballero, E. & Cabral-Perdomo, M. A. 2009. Gliptodontes (Xenarthra, Glyptodontidae) del Pleistoceno Tardío (Rancholabreano) de Hidalgo, Centro de México. Boletin de la Sociedad Geologíca Mexicana 61, 267–76.Google Scholar
Bryant, J. D. & Froelich, P. N. 1995 A model of oxygen isotope fractionation in body water of large mammals. Geochemical et Cosmochimica Acta 59, 4523–37.Google Scholar
Carranza-Castañeda, O. & Miller, W. E. 2004. Late Tertiary terrestrial mammals from Central México and their relationships to South America immigrants. Revista Brasileira de Paleontologia 7, 249–61.CrossRefGoogle Scholar
Cerling, T. E. & Harris, J. M. 1999. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347–63.Google Scholar
Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenman, V. & Ehleringer, J. R. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 152–8.CrossRefGoogle Scholar
Coplen, T. B. 1988. Normalization of oxygen and hydrogen isotope data. Chemical Geology 72, 293–7.Google Scholar
Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus 16, 436–68.CrossRefGoogle Scholar
De Iuliis, G., Bargo, S. M. & Vizcaíno, S. F. 2000. Variation in skull morphology and mastication in the fossil giant armadillos Pampatherium spp. and allied genera (Mammalia: Xenarthra: Pampatheriidae), with comments on their systematic and distribution. Journal of Vertebrate Paleontology 20, 743–54.Google Scholar
Ehleringer, J. R., Field, C. B., Liz, Z. F. & Kuo, C. Y. 1986. Leaf carbon isotope ratio and mineral composition in subtropical plants along an irradiance cline. Oecologia 70, 520–6.Google Scholar
Fariña, R. A. & Vizcaíno, S. F. 2001. Carved teeth and strange jaws: how glyptodonts masticated. Acta Paleontologica Polonica 46, 219–34.Google Scholar
Ferigolo, J. 1985. Evolutionary trends of histological pattern in the teeth of edentata (Xenarthra). Archives of Oral Biology 30, 7182.Google Scholar
Gillette, D. D & Ray, C. E. 1981. Glyptodonts of North America. Smithsonian Contributions to Paleobiology 40, 1255.Google Scholar
Grimes, S. T., Collinson, M. E., HookerJ, J. J, J. & Mattey, D. P. 2008. Is small beautiful? A review of the advantages and limitations of using small mammal teeth and direct fluorination analysis technique in the isotopic reconstruction of past continental climate change. Palaeogeography, Palaeoclimatology, Palaeoecology 256, 3950.Google Scholar
Hammer, Ø. & Harper, D. 2006. Paleontological Data Analysis. Oxford: Blackwell Publishing, 351 pp.Google Scholar
Hillson, S. 1986. Teeth. Cambridge, UK: Cambridge University Press, 376 pp.Google Scholar
Hintze, J. 2004. NCSS and PASS. Kaysville, Utah: Number Cruncher Statistical Systems. Available at http://www.ncss.com.Google Scholar
Iacumin, P., Bocherens, H., Mariotti, A. & Longinelli, A. 1996. Oxygen isotope analyses of co-existing carbonate and phosphate in biogenic apatite: a way to monitor diagenetic alteration of bone phosphate? Palaeogeography, Palaeoclimatology, Palaeoecology 142, 16.Google Scholar
Keeley, J. E. & Rundel, P. W. 2003. Evolution of CAM and C4 carbon-concentrating mechanisms. International Journal Plants Science 164, (supplement 3) S55S77.Google Scholar
Koch, P. L. 2007. Isotopic study of the biology of modern and fossil vertebrates. In Stable Isotopes in Ecology and Environmental Science (eds Micherner, R. H. & Lajtha, K.), pp. 99154. Baltimore: Blackwell Publishing.CrossRefGoogle Scholar
Koch, P. L., Tuross, N. & Fogel, M. L. 1997. The effects of sample treatment and diagenesis on the isotopic integrity of carbon in biogenic hydroxylapatite. Journal of Archaeological Science 24, 417–29.Google Scholar
Kohn, M. J. 1996. Predicting animal δ18O: accounting for diet and physiological adaptation. Geochemical et Cosmochimica Acta 60, 4811–29.CrossRefGoogle Scholar
Kohn, M. J., Schoeninger, M. J. & Valley, J. W. 1998. Variability in oxygen isotope composition of herbivore teeth: reflections of seasonality or developmental physiology? Chemical Geology 152, 97112.CrossRefGoogle Scholar
Lorenzo, J. L. & Mirambell, L. 1986. Preliminary report on archeological and paleoenvironmental studies in the area of El Cedral, San Luis Potosí, México. In New Evidence for the Pleistocene Peopling of the Americas (ed Bryan, A. L.) pp. 107–13. Orono, Maine: Center for the Study of the Early Man, University of Maine, Peopling of the Americas Symposia Series.Google Scholar
MacFadden, B. J. 2006. Extinct mammalian biodiversity of the ancient New World tropic. Trends in Ecology and Evolution 21, 157–65.Google Scholar
MacFadden, B. & Cerling, T. E. 1996. Mammalian herbivore communities, ancient feeding ecology, and carbon isotopes: a 10 million–year sequence from the Neogene of Florida. Journal of Vertebrate Paleontology 16, 103–15.Google Scholar
MacFadden, B. J., Desantis, L. R. G., Hochstein, J. L. & Kamenov, G. D. 2010. Physical properties, geochemistry, and diagenesis of xenarth teeth: prospects for interpreting the paleoecology of extinct species. Palaeogeography, Palaeoclimatology, Palaeoecology 291, 180–9.Google Scholar
McDonough, C. M. & Loughry, W. J. 2008. Behavioral ecology of armadillos. In The Biology of Xenarthra (eds Vizcaíno, S. & Loughry, W. J.), pp. 281–93. Gainsville: University Press of Florida.Google Scholar
Mead, J. I., Swift, S. L., White, R. S., McDonald, H. G. & Baez, A. 2007. Late Pleistocene (Rancholabrean) Glyptodont and Pampathere (Xenarthra, Cingulata) from Sonora, México. Revista Mexicana de Ciencias Geológicas 24, 39449.Google Scholar
Pérez-Crespo, V. A., Sánchez-Chillón, B., Arroyo-Cabrales, J., Alberdi, M. T., Polaco, O. J., Santos-Moreno, A., Benammi, M., Morales-Puente, P. & Cienfuegos-Alvardo, E. 2009. La dieta y el hábitat del mamut y los caballos del Pleistoceno tardío de El Cedral con base en isótopos estables (δ13C, δ18O). Revista Mexicana de Ciencias Geológicas 26, 347–55.Google Scholar
Révész, K. M. & Landwehr, J. M. 2002. δ13C and δ18O isotopic composition of CaCO3 measured by continuous flow isotope ratio mass spectrometry: statistical evaluation and verification by application to Devils Hole core DH – 11 calcite. Rapid Communications in Mass Spectrometry 16, 2102–14.Google Scholar
Rincón, A. D., White, R. S. & McDonald, H. G. 2008. Late Pleistocene cingulates (Mammalian: Xenarthra) from Mene de Inciarte tar pits, Sierra de Perijá, Western Venezuela. Journal of Vertebrate Paleontology 28, 197207.CrossRefGoogle Scholar
Sánchez, B. 2005. Reconstrucción del ambiente de mamíferos extintos a partir del análisis isotópico de los restos esqueléticos. In Nuevas técnicas metodológicas aplicadas al estudio de los sistemas ambientales: los isótopos estables (eds Alcorno, P., Redondo, R. & Toledo, J.), 4964. Universidad Autónoma de Madrid, España.Google Scholar
Sánchez-Chillón, B., Alberdi, M. T., Leone, G., Bonadonna, F. P., Stenni, B. & Longinelli, A. 1994. Oxygen isotopic composition of fossil equid tooth and bone phosphate: an archive of difficult interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology 107, 317–28.Google Scholar
Sánchez-Martínez, F. & Alvarado, J. L. In press. Análisis palinológico del sitio El Cedral, San Luis Potosí, México. Instituto Nacional de Antropología e Historia, Colección Científica, México, D.F. 10 pp.Google Scholar
Smith, B. N. & Epstein, S. 1971. Two categories of 13C/12C ratios for higher plants. Plant Physiology 47, 380–4.Google Scholar
Tonni, E. & Pasquali, R. 2002. El gran intercambio faunístico americano. Cartilla de Difusión de Ciencias Naturales, Centro de Investigación Científicas CICYTTP-Diamante 2, 9.Google Scholar
Vizcaíno, S. F. 2000. Vegetation partitioning among Lujanian (Late-Pleistocene/Early-Holocene) armored herbivores in the Pampean region. Current Research in the Pleistocene 17, 135–6.Google Scholar
Vizcaíno, S. F. 2009. The teeth of the “toothless”: novelties and key innovations in the evolution of xenarthrans (Mammalian: Xenarthra). Paleobiology 35, 343–66.CrossRefGoogle Scholar
Vizcaíno, S. F., De Iuliis, G. & Bargo, M. S. 1998. Skull shape, masticatory apparatus, and diet of Vassallia and Holmesina (Mammalia: Xenarthra: Pampatheridae); when anatomy constrains destiny. Journal of Mammalian Evolution 5, 291322.Google Scholar
Vizcaíno, S. F., Fariña, R. A., Bargo, M. S. & De Iuliis, G. 2004. Functional and phylogenetic assessment of the masticatory adaptations in Cingulta (Mammalia, Xenarthra). Ameghiniana 41, 651–64.Google Scholar
Vogel, J. C. 1978, Isotopic assessment of the dietary habitats of ungulate. South African Journal of Science 74, 298301.Google Scholar
Werner, R. A. & Brand, W. A. 2001. Referencing strategies and techniques in stable isotope ratio analysis. Rapid Communications in Mass Spectrometry 15, 501–19.Google Scholar
Wilson, D. E. & Reeder, D. A. M. 2005. Mammals Species of the World. A taxonomical and geographic reference. Baltimore: Johns Hopkins University Press, 2142 pp.CrossRefGoogle Scholar
Woodburne, M. O., Cione, A. L. & Tonnin, E. P. 2006. Central American provincialism and the Great American Biotic Interchange. In Advances in Late Tertiary Vertebrate Paleontology in México and the Great American Biotic Interchange (eds Carranza-Castañeda, O. & Lindsay, E. H.), pp. 73101. Universidad Nacional Autónoma de México, Instituto de Geología y Centro de Geociencias, Publicación Especial 4.Google Scholar