Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-20T05:07:47.723Z Has data issue: false hasContentIssue false

Molecular evidence for sympatric taxa within Pemphigus betae (Hemiptera: Aphididae: Eriosomatinae)

Published online by Cambridge University Press:  02 April 2012

R. G. Foottit*
Affiliation:
Invertebrate Biodiversity (National Environmental Health Network) and Canadian National Collection of Insects, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario, Canada K1A 0C6
K. Floate
Affiliation:
Lethbridge Research Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, Alberta, Canada T1J 4B1
E. Maw
Affiliation:
Invertebrate Biodiversity (National Environmental Health Network) and Canadian National Collection of Insects, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario, Canada K1A 0C6
*
1 Corresponding author (e-mail: Robert.Foottit@agr.gc.ca).

Abstract

Mitochondrial DNA cytochrome c oxidase subunit 1 (DNA barcode) and nuclear microsatellite flanking region sequences were used to analyse populations of putative “sugarbeet root aphid”, Pemphigus betae Doane, from sites in Alberta, Canada. Three sympatric genotypes were revealed, identified as P. betae, P. populivenae Fitch, and an undetermined third species. All three genotypes formed morphologically indistinguishable galls on the same set of cottonwood (Populus L., Salicaceae) host species, often on the same tree. Gall morphology is frequently used to identify Pemphigus species. Our results indicate that this practice may be unreliable for these three taxa at least.

Résumé

Les séquences de la sous-unité 1 de la cytochrome c oxydase de l'ADN mitochondrial (code à barres de l'ADN) et de la région flanquante des microsatellites nucléaires nous ont servi à analyser les populations de l'espèce putative du « puceron de la betterave à sucre », Pemphigus betae Doane, de sites de l'Alberta (Canada). Il existe trois génotypes sympatriques, identifiés comme P. betae, P. populivenae Fitch et une troisième espèce non identifiée. Les trois génotypes forment tous des galles qui sont impossibles à distinguer sur le même ensemble d'espèces-hôtes de peupliers (Populus L., Salicaceae), souvent sur le même arbre. La morphologie des galles sert souvent à identifier les espèces de Pemphigus; nos résultats indiquent que cette procédure n’est pas fiable au moins pour ces trois taxons.

[Traduction par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blackman, R.L., and Eastop, V.F. 2000. Aphids on the world's crops: an identification and information guide. 2nd ed. John Wiley & Sons, Chichester, UK.Google Scholar
Cranshaw, W., Kondratieff, B.C., and Qian, T. 1990. Insects associated with quinoa, Chenopodium quinoa, in Colorado. Journal of the Kansas Entomological Society, 63: 195199.Google Scholar
deWaard, J.R., Ivanova, N.V., Hajibabaei, M., and Hebert, P.D.N. 2008. Assembling DNA barcodes: analytical protocols. In Environmental genomics: methods in molecular biology. Vol. 410. Edited by Martin, C.C.. Humana Press, Totowa, New Jersey. pp. 275293.CrossRefGoogle Scholar
Floate, K.D. 2004. Extent and patterns of hybridization among the three species of Populus that constitute the riparian forest of southern Alberta, Canada. Canadian Journal of Botany, 82: 253264. doi:10.1139/b03-135.Google Scholar
Floate, K.D., and Whitham, T.G. 1993. The “hybrid bridge” hypothesis: host shifting via plant hybrid swarms. The American Naturalist 141: 651662. PMID:19426003 doi:10.1086/285497.Google Scholar
Floate, K.D., Martinsen, G.D., and Whitham, T.G. 1997. Cottonwood hybrid zones as centers of abundance for gall aphids in western North America: importance of relative habitat size. Journal of Animal Ecology, 66: 179188. doi:10.2307/6020.Google Scholar
Foottit, R.G., Maw, H.E.L., von Dohlen, C.D, and Hebert, P.D.N. 2008. Species identification of aphids (Insecta: Hemiptera: Aphididae) through DNA barcodes. Molecular Ecology Resources, 8: 11891201. doi:10.1111/j.1755-0998.2008.02297.x.CrossRefGoogle ScholarPubMed
Foottit, R.G., Maw, H.E.L., and Pike, K.S. 2009. DNA barcodes to explore diversity in aphids (Hemiptera Aphididae and Adelgidae). Redia, 92: 8791.Google Scholar
Grigarick, A.A., and Lange, W.H. 1962. Host relationships of the sugar-beet root aphid in California. Journal of Economic Entomology, 55: 760764.CrossRefGoogle Scholar
Harper, A.M. 1959. Gall aphids on poplar in Alberta I. Descriptions of galls and distributions of aphids. The Canadian Entomologist, 91: 489496. doi: 10.4039/Ent91489-8.CrossRefGoogle Scholar
Harper, A.M. 1963. Sugar-beet root aphid, Pemphigus betae Doane (Homoptera: Aphididae), in southern Alberta. The Canadian Entomologist, 95: 863873. doi:10.4039/Ent95863-8.Google Scholar
Hebert, P.D.N., Cywinska, A., Ball, S.L., and deWaard, J.R. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270: 313322.Google Scholar
Hutchison, W.D., and Campbell, C.D. 1994. Economic impact of sugarbeet root aphid (Homoptera: Aphididae) on sugarbeet yield and quality in southern Minnesota. Journal of Economic Entomology, 87: 465475.CrossRefGoogle Scholar
Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16: 11120. PMID:7441778 doi:10.1007/BF01731581.Google Scholar
Maxson, A.C. 1916. Some unpublished notes on Pemphigus betae Doane. Journal of Economic Entomology, 9: 500504.CrossRefGoogle Scholar
Maxson, A.C., and Knowlton, G.F. 1929. The tribe Pemphigini (Aphididae) in Utah. Annals of the Entomological Society of America, 32: 251271.Google Scholar
Moran, N.A., and Whitham, T.G. 1988. Evolutionary reduction of complex life cycles: loss of host-alternation in Pemphigus (Homoptera: Aphididae). Evolution, 42: 717728. doi:10.2307/2408863.Google Scholar
Palmer, M.A. 1952. Aphids of the Rocky Mountain region. Vol. 5. Thomas Say Foundation.Google Scholar
Posada, D, and Crandall, K.A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14: 817818. PMID:9918953 doi:10.1093/bioinformatics/14.9.817.CrossRefGoogle ScholarPubMed
Ratnasingham, S., and Hebert, P.D.N. 2007. BOLD: the Barcode of Life Data System (www.barcodinglife.org). Molecular Ecology Notes, 7: 355364. PMID:18784790 doi:10.1111/j.1471-8286.2007.01678.x.Google Scholar
Remaudière, G., and Remaudière, M. 1997. Catalogue des Apididae du monde: Homoptera Aphidoidea. [Catalogue of the world's Aphididae: Homoptera Aphidoidea]. INRA Editions, Versailles, France.Google Scholar
Saitou, N., and Nei, M. 1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4: 406425. PMID:3447015.Google Scholar
Smith, C.F. 1984. Pemphiginae in North America. In Proceedings of the International Aphidological Symposium, Jablonna, Poland, 5211 April 1981. Edited by Szelegiewicz, H.. Polska Akademia Nauk, Instytut Zoologii, Ossolineum, Wroclaw, Poland. pp. 277302.Google Scholar
Stroyan, H.L.G. 1970. Three new aphid species from North America. Proceedings of the Royal Entomological Society of London Series B: Taxonomy, 39: 153162.Google Scholar
Summers, C.G., and Newton, A.S. 1989. Economic significances of Pemphigus populivenae Fitch (Homoptera: Aphididae) in California. Journal of Applied Agricultural Research, 4: 162167.Google Scholar
Swofford, D.L. 2003. PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Whitham, T.G. 1989. Plant hybrid zones as sinks for pests. Science (Washington, D.C.), 244: 14901493.CrossRefGoogle Scholar
Whitham, T.G., Martinsen, G.D., Floate, K.D., Dungey, H.S., Potts, B.M., and Keim, P. 1999. Plant hybrid zones affect biodiversity: tools for a genetic-based understanding of community structure. Ecology, 80: 416428. doi:10.1890/0012-9658(1999)080[0416:PHZABT]2.0.CO;2.Google Scholar