Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-28T15:04:23.430Z Has data issue: false hasContentIssue false

Calcareous dinoflagellate cysts from the Pleistocene (Marine Isotope Stage 31) of the Ross Sea, Antarctica

Published online by Cambridge University Press:  01 September 2011

Michael Streng*
Affiliation:
Palaeobiology Programme, Department of Earth Sciences, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
Oliver Esper
Affiliation:
Alfred Wegener Institute of Polar and Marine Research, Columbusstraße, 27568 Bremerhaven, Germany
Jutta Wollenburg
Affiliation:
Alfred Wegener Institute of Polar and Marine Research, Columbusstraße, 27568 Bremerhaven, Germany

Abstract

Following a report of supposed fragments of calcareous dinoflagellate cysts from a Pleistocene drill core (CRP-1) recovered in the Ross Sea, Antarctica, sediments of the same core were re-investigated for their microfossil content. Besides common foraminifera and other microfossils, rare complete cysts of calcareous dinoflagellates were found. All cysts belong to the species Caracomia arctica (Gilbert & Clark, 1983) Streng, Hildebrand-Habel & Willems, 2002, a taxon characteristic of late Neogene high latitude, coldwater environments. Two morphotypes can be distinguished, C. arctica f. arctica and C. arctica f. rossensis, of which the latter is described as a new form. The presence of C. arctica strengthens diatom-based palaeoenvironmental reconstructions of periodical sea ice-free conditions at the time of deposition. Accordingly, cysts of C. arctica are interpreted as resting cysts that allow survival during harsh intervals of the high latitude environment. Previously reported calcareous dinoflagellates cyst fragments from these sediments are re-interpreted as test fragments of bilamellar foraminifera, which represent the most common group of foraminifers in the sediments.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellemo, S. 1974. Ultrastructures in recent radial and granular calcareous foraminifera. Bulletin of the Geological Institutions of the University of Uppsala, New Series, 4, 117122.Google Scholar
Cape Roberts Science Team. 1998. Quaternary strata in CRP-1, Cape Roberts Project, Antarctica. Terra Antartica, 5, 3161.Google Scholar
Davey, F.J., Barrett, P.J., Cita, M.B., van der Meer, J.J.M., Tessensohn, F., Thomson, M.R.A., Webb, P.-N.Woolfe, K.J. 2001. Drilling for Antarctic Cenozoic climate and tectonic history at Cape Roberts, southwestern Ross Sea. EOS Transactions, 82, 585, 588590.CrossRefGoogle Scholar
Elbrächter, M., Gottschling, M., Hildebrand-Habel, T., Keupp, H., Kohring, R., Lewis, J., Meier, K.J.S., Montresor, M., Streng, M., Versteegh, G.J.M., Willems, H.Zonneveld, K. 2008. Establishing an agenda for calcareous dinoflagellates (Thoracosphaeraceae, Dinophyceae) including a nomenclatural synopsis of generic names. Taxon, 57, 12891303.CrossRefGoogle Scholar
Fensome, R.A., Taylor, F.J.R., Norris, G., Sarjeant, W.A.S., Wharton, D.I.Williams, G.L. 1993. A classification of living and fossil dinoflagellates. Micropaleontology Special Publication, No. 7, 351 pp.Google Scholar
Fütterer, D. 1977. Distribution of calcareous dinoflagellates in Cenozoic sediments of Site 366, eastern North Atlantic. Initial Reports of the Deep Sea Drilling Project, 41, 709737.Google Scholar
Fütterer, D. 1984. Pithonelloid calcareous dinoflagellates from the Upper Cretaceous and Cenozoic of the southeastern Atlantic Ocean, Deep Sea Drilling Project Leg 74. Initial Reports of the Deep Sea Drilling Project, 74, 533541.Google Scholar
Gilbert, M.W.Clark, D.L. 1983. Central Arctic Ocean paleoceanographic interpretations based on Late Cenozoic calcareous dinoflagellates. Marine Micropaleontology, 7, 385401.CrossRefGoogle Scholar
Gottschling, M., Keupp, H., Plötner, J., Knop, R., Willems, H.Kirsch, M. 2005. Phylogeny of calcareous dinoflagellates as inferred from ITS and ribosomal sequence data. Molecular Phylogenetics and Evolution, 36, 444455.CrossRefGoogle ScholarPubMed
Hildebrand-Habel, T.Streng, M. 2003. Calcareous dinoflagellate associations and Maastrichtian-Tertiary climatic change in a high latitude core (ODP Hole 689B, Maud Rise, Weddell Sea). Palaeogeography, Palaeoclimatology, Palaeoecology, 197, 293321.CrossRefGoogle Scholar
Lewis, J., Harris, A.S.D., Jones, K.J.Edmonds, R.L. 1999. Long-term survival of marine planktonic diatoms and dinoflagellates in stored sediment samples. Journal of Plankton Research, 21, 343354.CrossRefGoogle Scholar
Loeblich, A.R.Tappan, J. 1988. Foraminiferal genera and their classification. New York: Van Nostrand Reihold, 970 pp.CrossRefGoogle Scholar
Mudie, P.J. 1985. Palynology of the Cesar cores, Alpha Ridge. In Jackson, H.R., Mudie, P.J. & Blasco, S.M., eds. Initial geological report on CESAR – the Canadian expedition to study the Alpha Ridge, Arctic Ocean. Geological Survey of Canada, Paper 84-22, 149174.Google Scholar
Nomura, R. 1984. Cassidulinidae (Foraminiferida) from the eastern part of Lützow-Holm Bay, Antarctica. Transactions and Proceedings of the Palaeontological Society of Japan, New Series, 136, 92501.Google Scholar
Scherer, R.P., Bohaty, S.M., Dunbar, R.B., Esper, O., Flores, J.-A., Gersonde, R., Harwood, D.M., Roberts, A.P.Taviani, M. 2008. Antarctic records of precession-paced insolation-driven warming during early Pleistocene Marine Isotope Stage 31. Geophysical Research Letters, 35 , 10.1029/2007GL032254.CrossRefGoogle Scholar
Sen Gupta, B.K. 1999. Systematics of modern foraminifera. In SenGupta,B.K., ed. Modern foraminifera. Dordrecht: Kluwer Academic, 736.CrossRefGoogle Scholar
Streng, M., Hildebrand-Habel, T.Willems, H. 2002. Revision of the genera Sphaerodinella Keupp and Versteegh, 1989 and Orthopithonella Keupp in Keupp and Mutterlose, 1984 (Calciodinelloideae, calcareous dinoflagellate cysts). Journal of Paleontology, 76, 397407.2.0.CO;2>CrossRefGoogle Scholar
Streng, M., Hildebrand-Habel, T.Willems, H. 2004a. A proposed classification of archeopyle types in calcareous dinoflagellate cysts. Journal of Paleontology, 78, 456483.2.0.CO;2>CrossRefGoogle Scholar
Streng, M., Hildebrand-Habel, T.Willems, H. 2004b. Long-term evolution of calcareous dinoflagellate associations since the Late Cretaceous: comparison of a high- and a low latitude core from the Indian Ocean. Journal of Nannoplankton Research, 26, 1345.CrossRefGoogle Scholar
Streng, M., Banasová, M., Reháková, D.Willems, H. 2009. An exceptional flora of calcareous dinoflagellates from the middle Miocene of the Vienna Basin, SW Slovakia. Review of Palaeobotany and Palynology, 153, 225244.Google Scholar
Taviani, M.Claps, M. 1998. Biogenic Quaternary carbonates in the CRP-1 drillhole, Victoria Land Basin, Antarctica. Terra Antartica, 5, 419424.Google Scholar
Taviani, M., Beu, A.Lombardo, C. 1998. Pleistocene macrofossils from CRP-1 drillhole, Victoria Land Basin, Antarctica. Terra Antartica, 5, 485491.Google Scholar
Towe, K.M.Cifelli, R. 1967. Wall ultrastructure in the calcareous foraminifera: crystallographic aspects and a model for calcification. Journal of Paleontology, 41, 742762.Google Scholar
Versteegh, G.J.M., Servais, T., Streng, M., Munnecke, A.Vachard, D. 2009. A discussion and proposal concerning the use of the term calcispheres. Palaeontology, 52, 343348.CrossRefGoogle Scholar
Vink, A. 2004. Calcareous dinoflagellate cyst in South and equatorial Atlantic surface sediments: diversity, distribution, ecology and potential for paleoenvironmental reconstruction. Marine Micropaleontology, 50, 4388.CrossRefGoogle Scholar
Villa, G.Wise, S.W. 1998. Quaternary calcareous nannofossils from the Antarctic Region. Terra Antartica, 5, 479484.Google Scholar
Webb, P.N.Strong, C.P. 1998. Occurrence, stratigraphic distribution and palaeoecology of Quaternary foraminifera from CRP-1. Terra Antartica, 5, 455472.Google Scholar
Zonneveld, K.A.F., Meier, K.J.S., Esper, O., Siggelkow, D., Wendler, I.Willems, H. 2005. The (palaeo-) environmental significance of modern calcareous dinoflagellates: a review. Paläontologische Zeitschrift, 79, 6177.Google Scholar