Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T12:09:12.370Z Has data issue: false hasContentIssue false

ALD for clean energy conversion, utilization, and storage

Published online by Cambridge University Press:  18 November 2011

Jeffrey W. Elam
Affiliation:
Argonne National Laboratory, Argonne, IL 60439, USA; jelam@anl.gov
Neil P. Dasgupta
Affiliation:
Stanford University, Stanford, CA 94305; dasgupta@stanford.edu
Fritz B. Prinz
Affiliation:
Stanford University, Stanford, CA 94305; fbp@cdr.stanford.edu
Get access

Abstract

Atomic layer deposition (ALD) uses self-limiting chemical reactions between gaseous precursors and a solid surface to deposit materials in a layer-by-layer fashion. This process results in a unique combination of attributes, including sub-nm precision, the capability to engineer surfaces and interfaces, and unparalleled conformality over high-aspect ratio and nanoporous structures. Given these capabilities, ALD could play a central role in achieving the technological advances necessary to redirect our economy from fossil-based energy to clean, renewable energy. This article will survey some of the recent work applying ALD to clean energy conversion, utilization, and storage, including research in solid oxide fuel cells, thin-film photovoltaics, lithium-ion batteries, and heterogenous catalysts. Throughout the manuscript, we will emphasize how the unique qualities of ALD can enhance device performance and enable radical new designs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lewis, N.S., Basic Research Needs for Solar Energy Utilization, Report on the Basic Energy Sciences Workshop on Solar Energy Utilization; U.S. Department of Energy, Office of Science: 2005.CrossRefGoogle Scholar
2.Ritala, M., Leskelä, M., in Atomic Layer Deposition. In Handbook of Thin Film Materials, Nalwa, H.S., Ed. (Academic Press, San Diego, CA, 2001), Vol. 1, p. 103.Google Scholar
3.George, S.M., Chem. Rev. 110 (1), 111 (2010).CrossRefGoogle Scholar
4.Rolison, D.R., Long, R.W., Lytle, J.C., Fischer, A.E., Rhodes, C.P., McEvoy, T.M., Bourga, M.E., Lubers, A.M., Chemical Society Reviews 38 (1), 226 (2009).CrossRefGoogle Scholar
5.O’Hayre, R., Cha, S.-W., Colella, W., Prinz, F.B., Fuel Cell Fundamentals (Wiley, New York, NY, 2009).Google Scholar
6.Cassir, M., Ringuede, A., Niinisto, L., J. Mater. Chem. 20 (41), 8987 (2010).CrossRefGoogle Scholar
7.Putkonen, M., Sajavaara, T., Niinisto, J., Johansson, L.S., Niinisto, L., J. Mater. Chem. 12 (3), 442 (2002).CrossRefGoogle Scholar
8.Bernay, C., Ringuede, A., Colomban, P., Lincot, D., Cassir, M., J. Phys. Chem. Solids 74 (9–10), 1761 (2003).CrossRefGoogle Scholar
9.Shim, J.H., Chao, C.C., Huang, H., Prinz, F.B., Chem. Mater. 19 (15), 3850 (2007).CrossRefGoogle Scholar
10.Huang, H., Nakamura, M., Su, P.C., Fasching, R., Saito, Y., Prinz, F.B., J. Electrochem. Soc. 154 (1), B20 (2007).CrossRefGoogle Scholar
11.Huang, H., Shim, J.H., Chao, C.C., Pornprasertsuk, R., Sugawara, M., Gur, T.M., Prinz, F.B., J. Electrochem. Soc. 156 (3), B392 (2009).CrossRefGoogle Scholar
12.Su, P.C., Chao, C.C., Shim, J.H., Fasching, R., Prinz, F.B., Nano Lett. 8 (8), 2289 (2008).CrossRefGoogle Scholar
13.Chao, C.C., Hsu, C.M., Cui, Y., Prinz, F.B., ACS Nano (2011), doi:10.1021/nn201354p.Google Scholar
14.Park, J.S., Kim, Y.B., Shim, J.H., Kang, S., Gur, T.M., Prinz, F.B., Chem. Mater. 22 (18), 5366 (2010).CrossRefGoogle Scholar
15.Shim, J.H., Park, J.S., An, J., Gur, T.M., Kang, S., Prinz, F.B., Chem. Mater. 21 (14), 3290 (2009).CrossRefGoogle Scholar
16.Holme, T.P., Lee, C., Prinz, F.B., Solid State Ionics 179 (27–32), 1540 (2008).CrossRefGoogle Scholar
17.Chao, C.C., Kim, Y.B., Prinz, F.B., Nano Lett. 9 (10), 3626 (2009).CrossRefGoogle Scholar
18.Gourba, E., Ringuede, A., Cassir, M., Billard, A., Paiviasaari, J., Niinisto, J., Putkonen, M., Niinisto, L., Ionics 9 (1–2), 15 (2003).CrossRefGoogle Scholar
19.Ballee, E., Ringuede, A., Cassir, M., Putkonen, M., Niinisto, L., Chem. Mater. 21 (19), 4614 (2009).CrossRefGoogle Scholar
20.Fan, Z., Prinz, F.B., Nano Lett. 11 (6), 2202 (2011).CrossRefGoogle Scholar
21.Fan, Z., Chao, C.-C., Hossein-Babaei, F., Prinz, F.B., J. Mater. Chem. 21, 10903 (2011).CrossRefGoogle Scholar
22.Jiang, X.R., Huang, H., Prinz, F.B., Bent, S.F., Chem. Mater. 20 (12), 3897 (2008).CrossRefGoogle Scholar
23.Shim, J.H., Jiang, X., Bent, S.F., Prinz, F.B., J. Electrochem. Soc. 157 (6), B793 (2010).CrossRefGoogle Scholar
24.Marom, R., Amalraj, S.F., Leifer, N., Jacob, D., Aurbach, D., J. Mater. Chem. 21 (27), 9938 (2011).CrossRefGoogle Scholar
25.Xu, K., von Cresce, A., J. Mater. Chem. 21 (27), 9849 (2011).CrossRefGoogle Scholar
26.Myung, S.T., Hitoshi, Y., Sun, Y.K., J. Mater. Chem. 21 (27), 9891 (2011).CrossRefGoogle Scholar
27.Jung, Y.S., Cavanagh, A.S., Riley, L.A., Kang, S.H., Dillon, A.C., Groner, M.D., George, S.M., Lee, S.H., Adv. Mater. 22 (19), 2172 (2010).CrossRefGoogle Scholar
28.Riley, L.A., Van Ana, S., Cavanagh, A.S., Yan, Y.F., George, S.M., Liu, P., Dillon, A.C., Lee, S.H., J. Power Sources 196 (6), 3317 (2011).CrossRefGoogle Scholar
29.Aaltonen, T., Alnes, M., Nilsen, O., Costelle, L., Fjellvag, H., J. Mater. Chem. 20 (14), 2877 (2010).CrossRefGoogle Scholar
30.Putkonen, M., Aaltonen, T., Alnes, M., Sajavaara, T., Nilsen, O., Fjellvag, H., J. Mater. Chem. 19 (46), 8767 (2009).CrossRefGoogle Scholar
31.Alsema, E.A., De Wild-Scholten, M.J., Life-Cycle Analysis Tools for Green Materials and Process Selection 895, 73 (2006).Google Scholar
32.Reijnen, L., Feddes, B., Vredenberg, A.M., Schoonman, J., Goossens, A., J. Phys. Chem. B 108 (26), 9133 (2004).CrossRefGoogle Scholar
33.Gratzel, M., J. Photochem. Photobiol. C 4, 145 (2003).CrossRefGoogle Scholar
34.Law, M., Greene, L.E., Radenovic, A., Kuykendall, T., Liphardt, J., Yang, P., J. Phys. Chem. B 110 (45), 22652 (2006).CrossRefGoogle Scholar
35.Hamann, T.W., Martinson, A.B.E., Elam, J.W., Pellin, M.J., Hupp, J.T., Adv. Mater. 20 (8), 1560 (2008).CrossRefGoogle Scholar
36.Hamann, T.W., Martinson, A.B.F., Elam, J.W., Pellin, M.J., Hupp, J.T., J. Phys. Chem. C 112 (27), 10303 (2008).CrossRefGoogle Scholar
37.Martinson, A.B.F., Elam, J.W., Hupp, J.T., Pellin, M.J., Nano Lett. 7 (8), 2183 (2007).CrossRefGoogle Scholar
38.Martinson, A.B.F., Elam, J.W., Liu, J., Pellin, M.J., Marks, T.J., Hupp, J.T., Nano Lett. 8 (9), 2862 (2008).CrossRefGoogle Scholar
39.Shockley, W., Queisser, H.J., J. Appl. Phys. 32 (3), 510 (1961).CrossRefGoogle Scholar
40.Tisdale, W.A., Williams, K.J., Timp, B.A., Norris, D.J., Aydil, E.S., Zhu, X.Y., Science 328 (5985), 1543 (2010).CrossRefGoogle Scholar
41.Nozik, A.J., Chem. Phys. Lett. 457 (1–3), 3 (2008).CrossRefGoogle Scholar
42.McGuire, J.A., Joo, J., Pietryga, J.M., Schaller, R.D., Klimov, V.I., Acc. Chem. Res. 41 (12), 1810 (2008).CrossRefGoogle Scholar
43.Sukhovatkin, V., Hinds, S., Brzozowski, L., Sargent, E.H., Science 324 (5934), 1542 (2009).CrossRefGoogle Scholar
44.Sargent, E.H., Nat. Photon. 3 (6), 325 (2009).CrossRefGoogle Scholar
45.Wang, X., Koleila, G.I., Tang, J., Liu, H., Kramer, I.J., Debnath, R., Brzozowski, L., Barkhouse, D.A.R., Levina, L., Hoogland, S., Sargent, E.H., Nat. Photon. 5, 480 (2011).CrossRefGoogle Scholar
46.Dutta, A.K., Ho, T.T., Zhang, L.Q., Stroeve, P., Chem. Mater. 12 (4), 1042 (2000).CrossRefGoogle Scholar
47.Leskelä, M., Niinisto, L., Niemela, P., Nykanen, E., Soininen, P., Tiitta, M., Vahakangas, J., Vacuum 41 (4–6), 1457 (1990).CrossRefGoogle Scholar
48.Nykanen, E., Laineylijoki, J., Soininen, P., Niinisto, L., Leskelä, M., Hubertpfalzgraf, L.G., J. Mater. Chem. 4 (9), 1409 (1994).CrossRefGoogle Scholar
49.Dasgupta, N.P., Lee, W., Prinz, F.B., Chem. Mater. 21 (17), 3973 (2009).CrossRefGoogle Scholar
50.Dasgupta, N.P., Jung, H.J., Trejo, O., McDowell, M.T., Hryciw, A., Brongersma, M., Sinclair, R., Prinz, F.B., Nano Lett. 11 (3), 934 (2011).CrossRefGoogle Scholar
51.Lee, W., Dasgupta, N.P., Jung, H.J., Lee, J.-R., Sinclair, R., Prinz, F.B., Nanotechnology 21, 485402 (2010).CrossRefGoogle Scholar
52.Pourret, A., Guyot-Sionnest, P., Elam, J.W., Adv. Mater. 21 (2), 232 (2009).CrossRefGoogle Scholar
53.Lambert, K., Dendooven, J., Detavernier, C., Hens, Z., Chem. Mater. 23 (2), 126 (2011).CrossRefGoogle Scholar
54.Ozokwelu, D., Porcelli, J., Akinjiola, P., Chemical Bandwidth Study; U.S. Department of Energy, Energy Efficiency and Renewable Energy Program, 2006.Google Scholar
55.Feng, H., Elam, J.W., Libera, J.A., Setthapun, W., Stair, P.C., Chem. Mater. 22 (10), 3133 (2010).CrossRefGoogle Scholar
56.Feng, H., Lu, J.L., Stair, P.C., Elam, J.W., Catalysis Letters 141 (4), 512 (2011).CrossRefGoogle Scholar
57.Christensen, S.T., Elam, J.W., Rabuffetti, F.A., Ma, Q., Weigand, S.J., Lee, B., Seifert, S., Stair, P.C., Poeppelmeier, K.R., Hersam, M.C., Bedzyk, M.J., Small 5 (6), 750 (2009).CrossRefGoogle Scholar
58.Christensen, S.T., Elam, J.W., Chem. Mater. 22 (8), 2517 (2010).CrossRefGoogle Scholar
59.Christensen, S.T., Feng, H., Libera, J.L., Guo, N., Miller, J.T., Stair, P.C., Elam, J.W., Nano Lett. 10 (8), 3047 (2010).CrossRefGoogle Scholar
60.Feng, H., Elam, J.W., Libera, J.A., Pellin, M.J., Stair, P.C., J. Catal. 269 (2), 421 (2010).CrossRefGoogle Scholar