Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-29T13:20:49.024Z Has data issue: false hasContentIssue false

Zn–Ni–Co–O wide-band-gap p-type conductive oxides with high work functions

Published online by Cambridge University Press:  19 August 2011

A. Zakutayev*
Affiliation:
National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, Colorado 80401
J.D. Perkins
Affiliation:
National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, Colorado 80401
P.A. Parilla
Affiliation:
National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, Colorado 80401
N.E. Widjonarko
Affiliation:
National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, Colorado 80401; Department of Physics, University of Colorado, Boulder, Colorado 80309
A.K. Sigdel
Affiliation:
National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, Colorado 80401; Department of Physics and Astronomy, University of Denver, Denver, Colorado 80208
J.J. Berry
Affiliation:
National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, CO 80401
D.S. Ginley
Affiliation:
National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, CO 80401
*
Address all correspondence to A. Zakutayev atandriy.zakutayev@nrel.gov
Get access

Abstract

Co3O4-based spinels are a new class of wide-band-gap p-type conductive oxides with high work functions. We examined the structures, conductivities, work functions, and optical spectra of quaternary Zn–Ni–Co–O thin films across the entire spinel region of the ZnO–NiO–Co3O4 diagram using a high-throughput combinatorial approach. We found that the conductivity of as-deposited films is maximized (100 S/cm) and optical absorption (at 1.8 eV) is minimized in different regions of the diagram, while the work function of annealed films is high and relatively constant (5.8 ± 0.1 eV). These properties made Zn–Ni–Co–O thin films applicable as p-type interlayers in solar cells. As an example, amorphous Zn–Co–O hole transport layers had good performance in bulk heterojunction organic photovoltaic devices.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kawazoe, H., Yasukawa, M., Hyodo, H., Kurita, M., Yanagi, H., and Hosono, H.: P-type electrical conduction in transparent thin films of CuAlO2. Nature 389, 939 (1997).CrossRefGoogle Scholar
2.Hosono, H., Ogo, Y., Yanagi, H., and Kamiya, T.: Bipolar conduction in SnO thin films. Electrochem. Solid-State Lett. 14, H13 (2011).Google Scholar
3.Sato, H., Minami, T., Takata, S., and Yamada, T.: Transparent conducting p-type NiO thin films prepared by magnetron sputtering. Thin Solid Films 236, 27 (1993).Google Scholar
4.Mizoguchi, H., Hirano, M., Fujitsu, S., Takeuchi, T., Ueda, K., and Hosono, H.: ZnRh2O4: a p-type semiconducting oxide with a valence band composed of a low spin state of Rh3+ in a 4d 6 configuration. Appl. Phys. Lett. 80, 1207 (2002).CrossRefGoogle Scholar
5.Wager, J.F., Keszler, D.A., and Presley, R.E.: Transparent Electronics Springer, New York, 2008).Google Scholar
6.Tate, J., Newhouse, P.F., Kykyneshi, R., Hersh, P.A., Kinney, J., McIntyre, D.H., and Keszler, D.A.: Chalcogen-based transparent conductors. Thin Solid Films 516, 5795 (2008).CrossRefGoogle Scholar
7.Ueda, K., Hiramatsu, H., Hirano, M., Kamiya, T., and Hosono, H.: Wide-gap layered oxychalcogenide semiconductors: materials, electronic structures and optoelectronic properties. Thin Solid Films 496, 8 (2006).CrossRefGoogle Scholar
8.Knop, O., Reid, K.I.G., Sutarno, R., and Nakagawa, Y.: Chalkogenides of the transition elements. VI. X-ray, neutron, and magnetic investigation of the spinels Co3O4, NiCo2O4, Co3S4, and NiCo2S4. Can. J. Chem. 46, 3463 (1968).CrossRefGoogle Scholar
9.Krezhov, K. and Konstantinov, P.: On the cationic distribution in zinc-cobalt oxide spinels. J. Phys.: Condens. Matter 5, 9287 (1993).Google Scholar
10.Owings, R.R., Exarhos, G.J., Windisch, C.F., Holloway, P.H., and Wen, J.G.: Process enhanced polaron conductivity of infrared transparent nickel–cobalt oxide. Thin Solid Films 483, 175 (2005).CrossRefGoogle Scholar
11.Dekkers, M., Rijnders, G., and Blank, D.H.A.: ZnIr2O4, a p-type transparent oxide semiconductor in the class of spinel zinc-d6-transition metal oxide. Appl. Phys. Lett. 90, 021903 (2007).CrossRefGoogle Scholar
12.Kim, S., Cianfrone, J.A., Sadik, P., Kim, K.-W., Ivill, M., and Norton, D.P.: Room temperature deposited oxide p-n junction using p-type zinc-cobalt-oxide. J. Appl. Phys. 107, 103538 (2010).CrossRefGoogle Scholar
13.Perkins, J.D., Paudel, T.R., Zakutayev, A., Ndione, P., Parilla, P.A., Lany, S., Ginley, D.S., Zunger, A., Perry, N.H., Mason, T.O., Bettinger, J.S., Shi, Y., and Toney, M.F.: Hole doping in ternary oxides: enhancing p-type conductivity in cobalt oxide spinels, unpublished.Google Scholar
14.Perkins, J.D., del Cueto, J.A., Alleman, J.L., Warmsingh, C., Keyes, B.M., Gedvilas, L.M., Parilla, P.A., To, B., Reade, D.W., and Ginley, D.S.: Combinatorial studies of Zn-Al-O and Zn-Sn-O transparent conducting oxide thin films. Thin Solid Films 411, 152 (2002).CrossRefGoogle Scholar
15.Zakutayev, A., Paudel, T., Perkins, J., Lany, S., Zunger, A., and Ginley, D.: Cation off-stoichiometry leads to p-type self-doping and enhanced transparency in Co2ZnO4 and Co2NiO4 spinels, unpublished.Google Scholar
16.Kim, K.J. and Park, Y.R.: Optical investigation of charge-transfer transitions in spinel Co3O4. Solid State Commun. 127, 25 (2003).CrossRefGoogle Scholar
17.Tang, Y., Grayson, M.A., Perry, N.H., Mason, T.O., Ndione, P.F., Zakutayev, A., Perkins, J.D., and Ginley, D.S., unpublished.Google Scholar
18.Steirer, K.X., Chesin, J.P., Widjonarko, N.E., Berry, J.J., Miedaner, A., Ginley, D.S., and Olson, D.C.: Solution deposited NiO thin-films as hole transport layers in organic photovoltaics. Org. Electron. 11, 1414 (2010).Google Scholar
Supplementary material: Image

Zakutayev Supplementary Image

Zakutayev Supplementary Image

Download Zakutayev Supplementary Image(Image)
Image 11.4 MB