Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T14:36:52.070Z Has data issue: false hasContentIssue false

Orbital migration models under test

Published online by Cambridge University Press:  10 November 2011

Wilhelm Kley*
Affiliation:
Institut für Astronomie & Astrophysik, Universität Tübingen, Morgenstelle 10, 72076 Tübingen, Germany email: wilhelm.kley@uni-tuebingen.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Planet-disk interaction predicts a change in the orbital elements of an embedded planet. Through linear and fully hydrodynamical studies it has been found that migration is typically directed inwards. Hence, this migration process gives natural explanation for the presence of the ’hot’ planets orbiting close to the parent star, and it plays a mayor role in explaining the formation of resonant planetary systems.

However, standard migration models for locally isothermal disks indicate a too rapid inward migration for small mass planets, and a large number of massive planets are found very far away from the star. Recent studies, including more complete disk physics, have opened up new paths to slow down or even reverse migration. The new findings on migration are discussed and connected to the observational properties of planetary systems.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Baruteau, C. & Masset, F. 2008, ApJ, 672, 1054CrossRefGoogle Scholar
Bitsch, B. & Kley, W. 2010, A&A, 523, A30Google Scholar
Correia, A. C. M., et al. 2009, A&A, 496, 521Google Scholar
Cresswell, P., Dirksen, G., Kley, W., & Nelson, R. P. 2007, A&A, 473, 329Google Scholar
Crida, A., Sándor, Z., & Kley, W. 2008, A&A, 483, 325Google Scholar
D'Angelo, G. & Lubow, S. H. 2010, ApJ, 724, 730CrossRefGoogle Scholar
Goldreich, P. & Tremaine, S. 1980, ApJ, 241, 425CrossRefGoogle Scholar
Holman, M. J., et al. 2010, Science, 330, 51CrossRefGoogle Scholar
Ida, S. & Lin, D. N. C. 2008, ApJ, 673, 487CrossRefGoogle Scholar
Kley, W., Bitsch, B., & Klahr, H. 2009, A&A, 506, 971Google Scholar
Kley, W. & Crida, A. 2008, A&A, 487, L9Google Scholar
Lee, M. H. & Peale, S. J. 2002, ApJ, 567, 596CrossRefGoogle Scholar
Masset, F. S., D'Angelo, G., & Kley, W. 2006, ApJ, 652, 730CrossRefGoogle Scholar
Masset, F. S. & Casoli, J. 2010, ApJ, 723, 1393CrossRefGoogle Scholar
Mordasini, C., Alibert, Y., Benz, W., & Naef, D. 2009, A&A, 501, 1161Google Scholar
Paardekooper, S.-J. & Mellema, G. 2006, A&A, 459, L17Google Scholar
Paardekooper, S.-J., Baruteau, C., & Kley, W. 2011, MNRAS, 410, 293CrossRefGoogle Scholar
Rein, H., Papaloizou, J. C. B., & Kley, W. 2010, A&A, 510, A4Google Scholar
Tanaka, H., Takeuchi, T., & Ward, W. R. 2002, ApJ, 565, 1257CrossRefGoogle Scholar
Tanaka, H. & Ward, W. R. 2004, ApJ, 602, 388CrossRefGoogle Scholar
Ward, W. R. 1986, Icarus, 67, 164CrossRefGoogle Scholar
Ward, W. R. 1988, Icarus, 73, 330CrossRefGoogle Scholar
Ward, W. R. & Hahn, J. M. 1994, Icarus, 110, 95CrossRefGoogle Scholar