Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T23:06:58.129Z Has data issue: false hasContentIssue false

Revisiting the eccentricities of hot Jupiters

Published online by Cambridge University Press:  10 November 2011

Nawal Husnoo
Affiliation:
School of Physics, University of Exeter, Exeter, EX4 4QL, UK email: nawal@astro.ex.ac.uk
Frédéric Pont
Affiliation:
School of Physics, University of Exeter, Exeter, EX4 4QL, UK email: nawal@astro.ex.ac.uk
Tsevi Mazeh
Affiliation:
School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
Daniel Fabrycky
Affiliation:
Harvard-Smithsonian Centre for Astrophysics, Garden Street, Cambridge MA
Guillaume Hébrard
Affiliation:
Institut d'Astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie Curie, 98bis boulevard Arago, 75014 Paris, France Observatoire de Haute-Provence, CNRS/OAMP, 04870 Saint-Michel-l'Observatoire, France
Claire Moutou
Affiliation:
Laboratoire d'Astrophysique de Marseille, Université de Provence, CNRS(UMR 6110), 38 rue Frédéric Joliot Curie, 13388 & Marseille cedex 13, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Most short period transiting exoplanets have circular orbits, as expected from an estimation of the circularisation timescale using classical tidal theory. Interestingly, a small number of short period transiting exoplanets seem to have orbits with a small eccentricity. Such systems are valuable as they may indicate that some key physics is missing from formation and evolution models. We have analysed the results of a campaign of radial velocity measurements of known transiting planets with the SOPHIE and HARPS spectrographs using Bayesian methods and obtained new constraints on the orbital elements of 12 known transiting exoplanets. We also reanalysed the radial velocity data for another 42 transiting systems and show that some of the eccentric orbits reported in the Literature are compatible with a circular orbit. As a result, we show that the systems with circular and eccentric orbits are clearly separated on a plot of the planetary mass versus orbital period. We also show that planets following the trend where heavier hot Jupiters have shorter orbital periods (the “mass-period relation” of hot Jupiters), also tend to have circular orbits, with no confirmed exception to this rule so far.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Agol, E., Cowan, N. B., Knutson, H. A., et al. 2010, ApJ, 721, 1861Google Scholar
Campo, C. J., Harrington, J., Hardy, R. A., et al. 2011, ApJ, 727, id.125CrossRefGoogle Scholar
Christian, D. J., Gibson, N. P., Simpson, E. K., et al. 2009, MNRAS, 392, 1585CrossRefGoogle Scholar
Hebb, L., Collier-Cameron, A., Loeillet, B., et al. 2009, ApJ, 693, 1920Google Scholar
Hebb, L., Collier-Cameron, A., Triaud, A. H. M. J., et al. 2010, ApJ, 708, 224CrossRefGoogle Scholar
Hellier, C., Anderson, D. R., Cameron, A. C., et al. 2009, Nature, 460, 1098CrossRefGoogle Scholar
Husnoo, N., et al. 2011a, MNRAS, 413, 2500CrossRefGoogle Scholar
Husnoo, N., et al. 2011b, in prepGoogle Scholar
Laughlin, G. and Marcy, G. W., Vogt, S. S., et al. 2005, ApJL, 629, L121Google Scholar
Lin, D. N. C., Bodenheimer, P., & Richardson, D. C. 1996, Nature, 380, 606CrossRefGoogle Scholar
López-Morales, M., Coughlin, J. L., Sing, D., et al. 2010, ApJL, 716, L36CrossRefGoogle Scholar
Lucy, L. B. & Sweeney, M. A. 1971, AJ, 76, 544Google Scholar
Maciejewski, G., Dimitrov, D., Neuhaeuser, R., et al. 2011, MNRAS, 411, 1204Google Scholar
Mazeh, T., Zucker, S., & Pont, F. 2005, MNRAS, 356, 955CrossRefGoogle Scholar
Nymeyer, S., Harrington, J., Hardy, R. A., et al. 2010, arXiv:1005.1017Google Scholar
Pont, F., Zucker, S., & Queloz, D. 2006, MNRAS, 373, 231CrossRefGoogle Scholar
Shen, Y. & Turner, E. L. 2006, ApJ, 685, 553CrossRefGoogle Scholar
Triaud, A. H. M. J., Collier-Cameron, A., & Queloz, D. 2010, A&A, 524, A25Google Scholar
Winn, J. N., Noyes, R. W., Holman, M. J., et al. 2005, ApJ, 631, 1215CrossRefGoogle Scholar
Zakamska, N. L., Pan, M., & Ford, E. B. 2010, MNRAS, 1566Google Scholar