Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-29T01:31:07.032Z Has data issue: false hasContentIssue false

ITO nanowires and nanoparticles for transparent films

Published online by Cambridge University Press:  20 October 2011

Eric N. Dattoli
Affiliation:
Gaithersburg, MD 20899, USA; eric.dattoli@nist.gov
Wei Lu
Affiliation:
Ann Arbor, MI 48109, USA; wluee@eecs.umich.edu
Get access

Abstract

Indium tin oxide (ITO) is the most widely used transparent electrode material today. Although the material possesses a superior combination of high optical transparency and large conductance, conventional ITO thin-film deposition techniques are incompatible with the mechanical and thermal requirements associated with the emerging class of flexible electronic devices. To address this issue, the status of the development of ITO nanostructures such as nanowires and nanoparticles will be reviewed in this article. Two major achievements to be discussed are the growth of vertically oriented arrays of ITO nanowires and the synthesis of small diameter, monodisperse ITO nanoparticles. In addition, solutions of these materials can be deposited utilizing existing printed electronics manufacturing techniques to realize highly transparent, conductive, and flexible ITO thin films on a diverse range of substrates, including plastics. These nanomaterial-based approaches could one day help realize low-cost, flexible electronics based on transparent thin-film electrodes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Baraton, M.-I., MRS Proc. 1209, 1209 (2009).CrossRefGoogle Scholar
2.Jeong, J.-A., Lee, J., Kim, H., Kim, H.-K., Na, S.-I., Sol. Energy Mater. Sol. Cells 94, 1840 (2010).CrossRefGoogle Scholar
3.O’Dwyer, C., Szachowicz, M., Visimberga, G., Lavayen, V., Newcomb, S.B., Torres, C.M.S., Nat. Nanotechnol. 4, 239 (2009).CrossRefGoogle Scholar
4.Edwards, P.P., Porch, A., Jones, M.O., Morgan, D.V., Perks, R.M., Dalton Trans. 2995 (2004).CrossRefGoogle Scholar
5.Kim, H., Pique, A., Horwitz, J.S., Mattoussi, H., Murata, H., Kafafi, Z.H., Chrisey, D.B., Appl. Phys. Lett. 74, 3444 (1999).CrossRefGoogle Scholar
6.Gordon, R.G., MRS Bull. 25, 52 (2000).CrossRefGoogle Scholar
7.Perelaer, J., Smith, P.J., Mager, D., Soltman, D., Volkman, S.K., Subramanian, V., Korvink, J.G., Schubert, U.S., J. Mater. Chem. 20, 8446 (2010).CrossRefGoogle Scholar
8.Tahar, R.B.H., Ban, T., Ohya, Y., Takahashi, Y., J. Appl. Phys. 83, 2631 (1998).CrossRefGoogle Scholar
9.Cairns, D.R., Witte, R.P., Sparacin, D.K., Sachsman, S.M., Paine, D.C., Crawford, G.P., Newton, R.R., Appl. Phys. Lett. 76, 1425 (2000).CrossRefGoogle Scholar
10.Jorgenson, J.D., U.S. Geol. Surv. 80 (2004).Google Scholar
11.Hong, H., Jung, H., Hong, S.-J., Res. Chem. Intermed. 36, 761 (2010).CrossRefGoogle Scholar
12.Singh, M., Haverinen, H.M., Dhagat, P., Jabbour, G.E., Adv. Mater. 22, 673 (2010).CrossRefGoogle Scholar
13.Peng, C.Q., Thio, Y.S., Gerhardt, R.A., Nanotechnology 19, 505603 (2008).CrossRefGoogle Scholar
14.Königer, T., Rechtenwald, T., Al-Naimi, I., Frick, T., Schmidt, M., Münstedt, H., J. Coat. Technol. Res. 7, 261 (2010).CrossRefGoogle Scholar
15.Baca, A.J., Ahn, J.-H., Sun, Y., Meitl, M.A., Menard, E., Kim, H.-S., Choi, W.M., Kim, D.-H., Huang, Y., Rogers, J.A., Angew. Chem. Int. Ed. 47, 5524 (2008).CrossRefGoogle Scholar
16.Sasaki, T., Endo, Y., Nakaya, M., Kanie, K., Nagatomi, A., Tanoue, K., Nakamura, R., Muramatsu, A., J. Mater. Chem. 20, 8153 (2010).CrossRefGoogle Scholar
17.Sung-Jei, H., Yong-Hoon, K., Jeong-In, H., IEEE Trans. Nanotechnol. 7, 172 (2008).CrossRefGoogle Scholar
18.Ramanan, S.R., Thin Solid Films 389, 207 (2001).CrossRefGoogle Scholar
19.Itoh, Y., Abdullah, M., Okuyama, K., J. Mater. Res. 19, 1077 (2004).CrossRefGoogle Scholar
20.Puetz, J., Al-Dahoudi, N., Aegerter, M.A., Adv. Eng. Mater. 6, 733 (2004).CrossRefGoogle Scholar
21.Reindl, A., Mahajeri, M., Hanft, J., Peukert, W., Thin Solid Films 517, 1624 (2009).CrossRefGoogle Scholar
22.Al-Dahoudi, N., Bisht, H., Göbbert, C., Krajewski, T., Aegerter, M.A., Thin Solid Films 392, 299 (2001).CrossRefGoogle Scholar
23.Maksimenko, I., Gross, M., Königer, T., Münstedt, H., Wellmann, P.J., Thin Solid Films 518, 2910 (2010).CrossRefGoogle Scholar
24.Ederth, J., Hultåker, A., Niklasson, G.A., Heszler, P., van Doorn, A.R., Jongerius, M.J., Burgard, D., Granqvist, C.G., Appl. Phys. A 81, 1363 (2005).CrossRefGoogle Scholar
25.Mahajeri, M., Voigt, M., Klupp Taylor, R.N., Reindl, A., Peukert, W., Thin Solid Films 518, 3373 (2010).CrossRefGoogle Scholar
26.Ederth, J., Johnsson, P., Niklasson, G.A., Hoel, A., Hultaker, A., Heszler, P., Granqvist, C.G., van Doorn, A.R., Jongerius, M.J., Burgard, D., Phys. Rev. B 68, 155410 (2003).CrossRefGoogle Scholar
27.Birnstock, J., Blassing, J., Hunze, A., Scheffel, M., Stossel, M., Heuser, K., Wittmann, G., Worle, J., Winnacker, A., Appl. Phys. Lett. 78, 3905 (2001).CrossRefGoogle Scholar
28.Choi, S.-I., Nam, K.M., Park, B.K., Seo, W.S., Park, J.T., Chem. Mater. 20, 2609 (2008).CrossRefGoogle Scholar
29.Gilstrap, R.A., Capozzi, C.J., Carson, C.G., Gerhardt, R.A., Summers, C.J., Adv. Mater. 20, 4163 (2008).CrossRefGoogle Scholar
30.Kim, B.-C., Lee, J.-H., Kim, J.-J., Ikegami, T., Mater. Lett. 52, 114 (2002).CrossRefGoogle Scholar
31.Maksimenko, I., Wellmann, P., Thin Solid Films (2011), In press.Google Scholar
32.Goebbert, C., Nonninger, R., Aegerter, M.A., Schmidt, H., Thin Solid Films 351, 79 (1999).CrossRefGoogle Scholar
33.Takeda, Y., Kato, N., Higuchi, K., Takeichi, A., Motohiro, T., Fukumoto, S., Sano, T., Toyoda, T., Sol. Energy Mater. Sol. Cells 93, 808 (2009).CrossRefGoogle Scholar
34.Puetz, J., Aegerter, M.A., Thin Solid Films 516, 4495 (2008).CrossRefGoogle Scholar
35.Peng, C., Thio, Y.S., Gerhardt, R.A., J. Phys. Chem. C 114, 9685 (2010).CrossRefGoogle Scholar
36.Jeong, J.-A., Kim, J., Kim, H.-K., Sol. Energy Mater. Sol. Cells (2011), In press.Google Scholar
37.Jeong, J.-A., Kim, H.-K., Curr. Appl. Phys. 10, e105 (2010).CrossRefGoogle Scholar
38.Aegerter, M.A., Puetz, J., Gasparro, G., Al-Dahoudi, N., Opt. Mater. 26, 155 (2004).CrossRefGoogle Scholar
39.Heusing, S., de Oliveira, P.W., Kraker, E., Haase, A., Palfinger, C., Veith, M., Thin Solid Films 518, 1164 (2009).CrossRefGoogle Scholar
40.Lindström, H., Holmberg, A., Magnusson, E., Lindquist, S.-E., Malmqvist, L., Hagfeldt, A., Nano Lett. 1, 97 (2001).CrossRefGoogle Scholar
41.Bühler, G., Thölmann, D., Feldmann, C., Adv. Mater. 19, 2224 (2007).CrossRefGoogle Scholar
42.Halme, J., Saarinen, J., Lund, P., Sol. Energy Mater. Sol. Cells 90, 887 (2006).CrossRefGoogle Scholar
43.Kim, H., Gilmore, C.M., Pique, A., Horwitz, J.S., Mattoussi, H., Murata, H., Kafafi, Z.H., Chrisey, D.B., J. Appl. Phys. 86, 6451 (1999).CrossRefGoogle Scholar
44.Greer, J.R., Street, R.A., Acta Mater. 55, 6345 (2007).CrossRefGoogle Scholar
45.Savu, R., Joanni, E., Scripta Mater. 55, 979 (2006).CrossRefGoogle Scholar
46.Wan, Q., Dattoli, E.N., Fung, W.Y., Guo, W., Chen, Y., Pan, X., Lu, W., Nano Lett. 6, 2909 (2006).CrossRefGoogle Scholar
47.Lu, W., Lieber, C.M., J. Phys. D: Appl. Phys. 39, R387 (2006).CrossRefGoogle Scholar
48.Munir, M.M., Iskandar, F., Yun, K.M., Okuyama, K., Abdullah, M., Nanotechnology 19, 145603 (2008).CrossRefGoogle Scholar
49.Wang, H.-W., Ting, C.-F., Hung, M.-K., Chiou, C.-H., Liu, Y.-L., Liu, Z., Ratinac, K.R., Ringer, S.P., Nanotechnology 20, 055601 (2009).CrossRefGoogle Scholar
50.Kovtyukhova, N.I., Mallouk, T.E., Nanoscale (2011), In press.Google Scholar
51.Wu, Y., Xiang, J., Yang, C., Lu, W., Lieber, C.M., Nature 430, 61 (2004).CrossRefGoogle Scholar
52.Gao, J., Chen, R., Li, D.H., Jiang, L., Ye, J.C., Ma, X.C., Chen, X.D., Xiong, Q.H., Sun, H.D., Wu, T., Nanotechnology 22, 195706 (2011).CrossRefGoogle Scholar
53.Hochbaum, A.I., Yang, P., Chem. Rev. 110, 527 (2009).CrossRefGoogle Scholar
54.Wan, Q., Wei, M., Zhi, D., MacManus-Driscoll, J.L., Blamire, M.G., Adv. Mater. 18, 234 (2006).CrossRefGoogle Scholar
55.Kim, J.K., Chhajed, S., Schubert, M.F., Schubert, E.F., Fischer, A.J., Crawford, M.H., Cho, J., Kim, H., Sone, C., Adv. Mater. 20, 801 (2008).CrossRefGoogle Scholar
56.Gevaux, D., Nat. Photonics 1, 186 (2007).CrossRefGoogle Scholar
57.Huang, Y., Duan, X., Wei, Q., Lieber, C.M., Science 291, 630 (2001).CrossRefGoogle Scholar
58.Smith, P.A., Nordquist, C.D., Jackson, T.N., Mayer, T.S., Martin, B.R., Mbindyo, J., Mallouk, T.E., Appl. Phys. Lett. 77, 1399 (2000).CrossRefGoogle Scholar
59.Shim, B.S., Podsiadlo, P., Lilly, D.G., Agarwal, A., Lee, J., Tang, Z., Ho, S., Ingle, P., Paterson, D., Lu, W., Kotov, N.A., Nano Lett. 7, 3266 (2007).CrossRefGoogle Scholar
60.Noh, Y.-Y., Cheng, X., Sirringhaus, H., Sohn, J.I., Welland, M.E., Kang, D.J., Appl. Phys. Lett. 91, 043109 (2007).CrossRefGoogle Scholar
61.Whang, D., Jin, S., Wu, Y., Lieber, C.M., Nano Lett. 3, 1255 (2003).CrossRefGoogle Scholar