Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-18T08:49:57.449Z Has data issue: false hasContentIssue false

Meta-analysis of the neural representation of first language and second language

Published online by Cambridge University Press:  15 April 2011

RAJANI SEBASTIAN*
Affiliation:
University of Texas at Austin
ANGELA R. LAIRD
Affiliation:
University of Texas Health Science Center, San Antonio
SWATHI KIRAN
Affiliation:
Boston University Sargent College
*
ADDRESS FOR CORRESPONDENCE Rajani Sebastian, Department of Communication Sciences & Disorders, University of Texas at Austin, Austin, TX 78712. E-mail: sebastianr@mail.utexas.edu

Abstract

This study reports an activation likelihood estimation meta-analysis of published functional neuroimaging studies of bilingualism. Four parallel meta-analyses were conducted by taking into account the proficiency of participants reported in the studies. The results of the meta-analyses suggest differences in the probabilities of activation patterns between high proficiency and moderate/low proficiency bilinguals. The Talairach coordinates of activation in first language processing were very similar to that of second language processing in the high proficient bilinguals. However, in the low proficient group, the activation clusters were generally smaller and distributed over wider areas in both the hemispheres than the clusters identified in the ALE maps from the high proficient group. These findings draw attention to the importance of language proficiency in bilingual neural representation.

Type
Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abutalebi, J. (2008). Neural aspects of second language representation and language control. Acta Pscychologica, 128, 466478.CrossRefGoogle ScholarPubMed
Abutalebi, J., & Green, D. (2007). Bilingual language production: The neurocognition of language representation and control. Journal of Neurolinguistics, 20, 242275.Google Scholar
Abutalebi, J., Cappa, S. F., & Perani, D. (2001). The bilingual brain as revealed by functional neuroimaging. Bilingualism: Language and Cognition, 4, 179190.CrossRefGoogle Scholar
Abutalebi, J., Cappa, S. F., & Perani, D. (2005). Functional neuroimaging of the bilingual brain. In Kroll, J. F. K. & De Groot, A. M. (Eds.), Handbook of bilingualism: Psycholinguistic approaches. Oxford: Oxford University Press.Google Scholar
Albert, M. L., & Obler, L. K. (1978). The bilingual brain: Neuropsychological and neurolinguistic aspects of bilingualism. New York: Academic Press.Google Scholar
Bookheimer, S. (2002). Functional MRI of language: New approaches to understanding the cortical organization of semantic processing. Annual Review Neuroscience, 25, 151188.CrossRefGoogle ScholarPubMed
Booth, J. R., Wood, L., Lu, D., Houk, J. C., & Bitan, T. (2007). The role of the basal ganglia and cerebellum in language processing. Brain Research, 1133, 136144.CrossRefGoogle ScholarPubMed
Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402, 179181.CrossRefGoogle ScholarPubMed
Braver, T. S., Barch, D. M., Gray, J. R., Molfese, D. L., & Avraham, S. (2001). Anterior cingulate cortex and response conflict: Effects of frequency, inhibition, and errors. Cerebral Cortex, 11, 825836.Google Scholar
Brown, S., Laird, A. R., Ingham, R. J., Ingham, J. C., & Fox, P. T. (2005). Stuttered and fluent speech production: An ALE meta-analysis of functional neuroimaging studies. Human Brain Mapping, 25, 105117.Google Scholar
Bush, G., Frazier, J. A., Rauch, S. L., Seidman, L. J., Whalen, P. J., Jenike, M. A., et al. (1999). Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the Counting Stroop. Biological Psychiatry, 45, 15421552.CrossRefGoogle ScholarPubMed
Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4, 215222.CrossRefGoogle ScholarPubMed
Cabeza, R., & Nyberg, L. (1997). Imaging cognition: An empirical review of PET studies with normal subjects. Journal of Cognitive Neuroscience, 9, 126.Google Scholar
Callan, D. E., Jones, J. A., Callan, A. M., & Akahane-Yamada, R. (2004). Phonetic perceptual identification by native- and second-language speakers differentially activates brain regions involved with acoustic phonetic processing and those involved with articulatory-auditory/orosensory internal models. NeuroImage, 22, 11821194.CrossRefGoogle ScholarPubMed
Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280, 747749.Google Scholar
Chee, M. W., Tan, E. W. L., & Thiel, T. (1999). Mandarin and English single words processing studied with functional magnetic resonance imaging. Journal of Neuroscience, 15, 30503056.Google Scholar
Chee, M. W. L., Hon, N., Lee, H. L., & Soon, C. S. (2001). Relative language proficiency modulates BOLD signal change when bilinguals perform semantic judgments. NeuroImage, 13, 11551163.Google Scholar
Chee, M. W. L., Weekes, B., Lee, K. M., Soon, C. S., Schreiber, A., Hoon, J. J., et al. (2000). Overlap and dissociation of semantic processing of Chinese characters, English words, pictures: Evidence from fMRI. NeuroImage, 12, 392403.CrossRefGoogle ScholarPubMed
De Bleser, R., Dupont, P., Postler, J., Bormans, G., Speelman, D., Mortelmans, L., et al. (2003). The organization of the bilingual lexicon: A PET study. Journal of Neurolinguistics, 16, 439456.CrossRefGoogle Scholar
Dehaene, S., & Changeux, J. P. (1991). The Wisconsin Card Sort Test: Theoretical analysis and modeling in a neuronal network. Cerebral Cortex, 1, 6279.Google Scholar
Dehaene, S., Dupoux, E., Mehler, J., Cohen, L., Paulesu, E., Perani, D., et al. (1997). Anatomical variability in the cortical representation of first and second language. NeuroReport, 8, 38093815.CrossRefGoogle ScholarPubMed
Derrfuss, J., Brass, M., Neumann, J., & Yves von Cramon, D. (2005). Involvement of the inferior frontal junction in cognitive control: Meta-analyses of switching and Stroop studies. Human Brain Mapping, 25, 2234.Google Scholar
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective attention. Annual Review of Neuroscience, 18, 193222.Google Scholar
Desmond, J. E., & Fiez, J. A. (1998). Neuroimaging studies of the cerebellum: Language, learning and memory. Trends in Cognitive Sciences, 2, 355361.CrossRefGoogle ScholarPubMed
Ding, G., Perry, C., Peng, D., Ma, L., Li, D., Xu, S., et al. (2003). Neural mechanisms underlying semantic and orthographic processing in Chinese–English bilinguals. NeuroReport, 14, 15571562.CrossRefGoogle ScholarPubMed
Edmonds, L., & Kiran, S. (2006). Effect of semantic naming treatment on cross linguistic generalization in bilingual aphasia. Journal of Speech, Language, and Hearing Research, 49, 729748.Google Scholar
Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30, 29072926.CrossRefGoogle Scholar
Ellison-Wright, I., Glahn, D. C., Laird, A. R., Thelen, S. M., & Bullmore, E. T. (2008). The anatomy of first-episode and chronic schizophrenia: An anatomical likelihood estimation meta-analysis. American Journal of Psychology, 165, 10151023.CrossRefGoogle ScholarPubMed
Fabbro, F. (1999). The neurolinguistics of bilingualism. Hove: Psychology Press.Google Scholar
Fernandez, B., Cardebat, D., Demonet, J. F., Joseph, P. A., Mazaux, J. M., Barat, M., et al. (2004). Functional MRI follow-up study of language processes in healthy subjects and during recovery in a case of aphasia. Stroke, 35, 21712176.Google Scholar
Fitzgerald, P. B., Oxley, T. J., Laird, A. R., Kulkarni, J., Egan, G. F., & Daskalakis, Z. J. (2006). An analysis of functional neuroimaging studies of dorsolateral prefrontal cortical activity in depression. Psychiatry Research, 148, 3345.Google Scholar
Fulbright, R. K., Jenner, A. R., Mencl, W. E., Pugh, K. R., Shaywitz, B. A., & Shaywitz, S. E. (1999). The cerebellum's role in reading: A functional MRI imaging study. American Journal of Neuroradiology, 20, 19251930.Google Scholar
Gandour, J., Tong, Y., Talavage, T., Wong, D., Dzemidzic, M., Xu, Y., et al. (2007). Neural basis of first and second language processing of sentence-level linguistic prosody. Human Brain Mapping, 28, 94–08.Google Scholar
Genovese, C. R., Laxar, N. A., & Nochols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage, 15, 870878.CrossRefGoogle ScholarPubMed
Glahn, D. C., Ragland, J. D., Abramoff, A., Barrett, J., Laird, A. R., Bearden, C. E., et al. (2005). Beyond hypofrontality: A quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Human Brain Mapping, 25, 6069.CrossRefGoogle ScholarPubMed
Golestani, N., Alario, F., Meriaux, S., Le Bihan, D., Dehaene, S., & Pallier, C. (2006). Syntax production in bilinguals. Neuropsychologia, 44, 10291040.CrossRefGoogle ScholarPubMed
Gomez-Tortosa, E., Martin, E. M., Gaviria, M., Charbel, F., & Ausman, J. I. (1995). Selective deficit of one language in a bilingual patient following surgery in the left perisylvian area. Brain and Language, 48, 320325.Google Scholar
Hagoort, P. (2005). On Broca, brain, and binding: A new framework. Trends in Cognitive Science, 9, 416423.CrossRefGoogle Scholar
Hasegawa, M., Carpenter, P. A., & Just, M. A. (2002). An fMRI study of bilingual sentence comprehension and workload. NeuroImage, 15, 647660.CrossRefGoogle ScholarPubMed
Hernandez, A. E., Dapretto, M., Mazziotta, J., & Bookheimer, S. (2001). Language switching and language representation in Spanish–English bilinguals: An fMRI study. NeuroImage, 14, 510520.Google Scholar
Hernandez, A. E., Martinez, A., & Kohnert, K. (2000). In search of the language switch: An fMRI study of picture naming in Spanish–English bilinguals. Brain and Language, 73, 421431.Google Scholar
Illes, J., Francis, W. S., Desmond, J. E., Gabrieli, J. D. E., Glover, G. H., Poldrack, R., et al. (1999). Convergent cortical representation of semantic processing in bilinguals. Brain and Language, 70, 347363.CrossRefGoogle ScholarPubMed
Indefrey, P. (2006). A Meta-analysis of hemodynamic studies on first and second language processing: Which suggested differences can we trust and what do they mean? Language Learning, 56, 279304.Google Scholar
Indefrey, P., & Levelt, W. J. M. (2004). The spatial and temporal signatures of word production components. Cognition, 92, 101144.CrossRefGoogle ScholarPubMed
Junque, C., Vendrell, P., & Vendrell, J. (1995). Differential impairments and specific phenomena in 50 Catalan–Spanish bilingual aphasic patient. In Paradis, M. (Ed.), Aspects of bilingual aphasia. Oxford: Pergamon Press.Google Scholar
Kerns, J. G., Cohen, J. D., MacDonald, A. W., Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303, 10231026.Google Scholar
Kim, K. H., Relkin, N. R., Lee, K. M., & Hirsch, J. (1997). Distinct cortical areas associated with native and second languages. Nature, 388, 171174.Google Scholar
Klein, D., Milner, B., Zatorre, R. J., Meyer, E., & Evans, A. C. (1995). The neural substrates underlying word generation: A bilingual functional imaging study. Proceedings of the National Academy of Science of the United States of America, 92, 28992903.Google Scholar
Klein, D., Milner, B., Zatorre, R. J., Zhao, V., & Nikelski, J. (1999). Cerebral organization in bilinguals: A PET study of Chinese–English verb generation. NeuroReport, 10, 28412845.CrossRefGoogle ScholarPubMed
Klein, D., Zatorre, R. J., Milner, B., Meyer, E., & Evans, A. C. (1994). Left putaminal activation when speaking a second language: Evidence from PET. NeuroReport, 5, 22952297.Google Scholar
Krain, A. L., Wilson, A. M., Arbuckle, R., Castellanos, F. X., & Milham, M. P. (2006). Distinct neural mechanisms of risk and ambiguity: A meta-analysis of decision-making. NeuroImage, 32, 477484.Google Scholar
Kuchonov, P., Lancaster, J., Thompson, P., Toga, A. W., Brewer, P., & Hardies, J. (2002). An optimized individual target brain in the Talairach coordinate system. NeuroImage, 17, 922927.Google Scholar
Laird, A. R., Fox, M., Price, C. J., Glahn, D. C., Uecker, A. M., Lancaster, J. L., et al. (2005). ALE meta-analysis: Controlling the false discovery rate and performing statistical contrasts. Human Brain Mapping, 25, 155164.Google Scholar
Laird, A. R., McMillan, K. M., Lancaster, J. L., Kochunov, P., Turkeltaub, P. E., Pardo, J. V., et al. (2005). A comparison of label-based review and ALE meta-analysis in the Stroop task. Human Brain Mapping, 25, 621.Google Scholar
Lancaster, J. L., Tordesillas-Gutierrez, D., Martinez, M., Salinas, F., Evans, A., Zilles, K., et al. (2007). Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Human Brain Mapping, 28, 11941205.CrossRefGoogle ScholarPubMed
Luke, K., Liu, H., Wai, Y., Wan, Y., & Tan, L. H. (2002). Functional anatomy of syntactic and semantic processing in language comprehension. Human Brain Mapping, 16, 133145.CrossRefGoogle ScholarPubMed
Ma, L., Wang, B., Narayana, S., Hazeltine, E., Chen, X., Robin, D. A., et al. (2010). Changes in regional activity are accompanied with changes in inter-regional connectivity during 4 weeks motor learning. Brain Research, 1318, 6476.CrossRefGoogle ScholarPubMed
MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of dorsolateral prefrontal cortex and anterior cingulate cortex in cognitive control. Science, 288, 18351838.CrossRefGoogle ScholarPubMed
Mahendra, N., Plante, E., Magloire, J., Milman, L., & Trouard, T. (2003). MRI variability and the localization of languages in the bilingual brain. NeuroReport, 14, 12251228.Google Scholar
Marian, V., Spivery, M., & Hirsch, J. (2003). Shared and separate systems in bilingual language processing: Converging evidence from eye tracking and brain imaging. Brain and Language, 86, 7082.Google Scholar
McMillan, K. M., Laird, A. R., Witt, S. T., & Meyerand, M. E. (2007). Self-paced working memory: Validation of verbal variations of the n-back paradigm. Brain Research, 1139, 133142.Google Scholar
Menzies, L. A. C., Chamberlain, S. R., Laird, A. R., Thelen, S. M., Sahakian, B. J., & Bullmore, E. T. (2008). Integrating evidence from neuroimaging and neuropsychological studies of obsessive compulsive disorder: The orbitofronto-striatal model revisited. Neuroscience Biobehavioral Review, 32, 525549.Google Scholar
Meschyan, G., & Hernandez, A. E. (2006). Impact of language proficiency and orthographic transparency on bilingual word reading: An fMRI investigation. NeuroImage, 29, 11351140.Google Scholar
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex. Annual Review of Neuroscience, 24, 167202.Google Scholar
Moro, A., Tettamanti, M., Perani, D., Donati, C., Cappa, S. F., & Fazio, F. (2001). Syntax and the brain: Disentangling grammar by selective anomalies. NeuroImage, 13, 110118.CrossRefGoogle ScholarPubMed
Nakai, T., Matsuo, K., Kato, C., Matsuzawa, M., Okada, T., Glover, G. H., et al. (1999). A functional magnetic resonance imaging study of listening comprehension of languages in human at 3-Tesla comprehension level and activation of the language areas. Neuroscience Letter, 263, 3336.Google Scholar
Nilipour, R., & Ashayeri, H. (1989). Alternating antagonism between two languages with successive recovery of a third in a trilingual aphasic patient. Brain and Language, 36, 2348.CrossRefGoogle Scholar
Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25, 4659.Google Scholar
Paradis, M. (1977). Bilingualism and aphasia. In Whitaker, H. & Whitaker, A. (Eds.), Studies in neurolinguistics. New York: Academic Press.Google Scholar
Perani, D., Dehaene, S., Grassi, F., Cohen, L., Cappa, S. F., Dupoux, F. F., et al. (1996). Brain processing of native and foreign languages. NeuroReport, 7, 24392444.Google Scholar
Perani, D., Paulesu, E., Galles, N. S., Dupoux, E., Dehaene, S., Bettinardi, V., et al. (1998). The bilingual brain: Proficiency and age of acquisition of the second language. Brain, 121, 18411852.Google Scholar
Petrides, M., Alivasatos, B., Meyer, E., & Evans, A. C. (1993). Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proceedings of the National Academy of Science of the United States of America, 90, 878882.CrossRefGoogle ScholarPubMed
Pillai, J. J., Allison, J. D., Sethuraman, S., Araque, J. M., Thiruvaiyaru, D., Ison, C. B., et al. (2004). Functional MR imaging study of language-related differences in bilingual cerebellar activation. American Journal of Neuroradiology, 25, 523532.Google Scholar
Pillai, J. J., Araque, J. M., Allison, J. D., Sethuraman, S., Loring, D. W., & Thiruvaiyaru, D. (2003). Functional MRI study of semantic and phonological language processing in bilingual subjects: Preliminary findings. NeuroImage, 19, 565576.Google Scholar
Poldrack, R. A., Wagner, A. D., Prull, M. W., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (1999). Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. NeuroImage, 10, 1535.Google Scholar
Price, C. J., Devlin, J. T., Moore, C. J., Morton, C., & Laird, A. R. (2005). Meta-analyses of object naming: Effect of baseline. Human Brain Mapping, 25, 7082.Google Scholar
Price, C. J., Green, D. W., & von Studnitz, R. (1999). A functional imaging study of translation and language switching. Brain, 122, 22212235.Google Scholar
Rüschemeyer, S. A., Fiebach, C., Kempe, V., & Friederici, A. D. (2005). Processing lexical semantic and syntactic information in first and second language: fMRI evidence from Russian and German. Human Brain Mapping, 25, 266286.Google Scholar
Ruschemeyer, S. A., Zysset, S., & Friederici, A. D. (2006). Native and non-native reading of sentences: An fMRI experiment. NeuroImage, 31, 354365.Google Scholar
Siok, W. T., Perfetti, C. A., Jin, Z., & Tan, L. H. (2004). Biological abnormality of impaired reading is constrained by culture. Nature, 431, 7176.CrossRefGoogle ScholarPubMed
Stowe, L., & Sabourin, L. (2005). Imaging the processing of a second language: Effects of maturation and proficiency on the neural processes involved. International Review of Applied Linguistics in Language Teaching, 43, 329354.Google Scholar
Suh, S., Yoon, H. W., Lee, S., Chung, J., Cho, Z., & Park, H. (2007). Effects of syntactic complexity in L1 and L2; An fMRI study of Korean–English bilinguals. Brain Research, 1136, 178189.CrossRefGoogle ScholarPubMed
Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain: 3-Dimensional proportional system: An approach to cerebral imaging. New York: Thieme Medical.Google Scholar
Tan, L. H., Laird, A. R., Li, K., & Fox, P. T. (2005). Neuroanatomical correlates of phonological processing of Chinese characters and alphabetic words: A meta-analysis. Human Brain Mapping, 25, 8391.Google Scholar
Tan, L. H., Liu, H. L., Perfetti, C. A., Spinks, J. A., Fox, P. T., & Gao, J. H. (2001). The neural system underlying Chinese logograph reading. NeuroImage, 13, 836846.Google Scholar
Tan, L. H., Spinks, J. A., Feng, C.-M., Siok, W. T., Perfetti, C. A., Xiong, J., et al. (2003). Neural systems of second language reading are shaped by native language. Human Brain Mapping, 18, 158166.Google Scholar
Tham, W. W. P., Liow, S. J. R., Rajapakse, J. C., Leong, T. C., Ng, S. E. S., Lim, W. E. H., et al. (2005). Phonological processing in Chinese–English bilinguals biscriptals: An fMRI study. NeuroImage, 28, 579587.Google Scholar
Thulborn, K. R., Carpenter, P. A., & Just, M. A. (1999). Plasticity of language-related brain function during recovery from stroke. Stroke, 30, 749754.Google Scholar
Turkeltaub, P. E., Eden, G. F., Jones, K. M., & Zeffiro, T. A. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: Method and validation. NeuroImage, 16, 765780.Google Scholar
Vandenberghe, R., Price, C., Wise, R., Josephs, O., & Frackowiak, R. S. J. (1996). Functional anatomy of a common semantic system for words and pictures. Nature, 383, 254256.Google Scholar
van Hell, J. G., & Dijkstra, T. (2002). Foreign language knowledge can influence native language performance in exclusively native contexts. Psychonomic Bulletin & Review, 9, 780789.Google Scholar
van Wijnendaele, I., & Brysbaert, M. (2002). Visual word recognition in bilinguals: Phonological priming from the second to the first language. Journal of Experimental Psychology, 28, 616627.Google Scholar
Wang, Y., Xue, G., Chen, C., Xue, F., & Dong, Q. (2007). Neural bases of asymmetric language switching in second-language learners: An ER-fMRI study. NeuroImage, 35, 862870.Google Scholar
Wartenburger, I., Heekeren, H., Abutalebi, J., Cappa, S., Villringer, A., & Perani, D. (2003). Early setting of grammatical processing in the bilingual brain. Neuron, 37, 159170.CrossRefGoogle ScholarPubMed
Weiller, C., Isensee, C., Rijntjes, M., Huber, W., Muller, S., & Bier, D. (1995). Recovery from Wernicke's aphasia: A positron emission tomographic study. Annals of Neurology, 37, 723732.Google Scholar
Winhuisen, L., Thiel, A., Schumacher, B., Kessler, J., Rudolf, J., & Haupt, W. F. (2007). Role of the contralateral inferior frontal gyrus in recovery of language function in post stroke aphasia: A combined repetitive transcranial magnetic stimulation and positron emission tomography study. Stroke, 36, 17591763.Google Scholar
Xiong, J., Ma, L., Wang, B., Narayana, S., Duff, E. P., Egan, G. F., et al. (2009). Long-term motor training induced changes in regional cerebral blood flow in both task and resting states. NeuroImage, 45, 7582.Google Scholar
Yokoyama, S., Okamoto, H., Miyamoto, T., Yoshimoto, K., Kim, J., Iwata, K., et al. (2006). Cortical activation in the processing of passive sentences in L1 and L2: An fMRI study. NeuroImage, 30, 570579.Google Scholar
Zatorre, R. J., Meyer, E., Gjedde, A., & Evans, A. C. (1996). PET studies of phonetic processing of speech: Review, replication, and reanalysis. Cerebral Cortex, 6, 2130.Google Scholar