Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-18T14:57:01.421Z Has data issue: false hasContentIssue false

The Dynamics of Formation of Graphane-like Fluorinated Graphene Membranes (Fluorographene): A Reactive Molecular Dynamics Study

Published online by Cambridge University Press:  30 August 2011

Ricardo P. B. Santos
Affiliation:
Instituto de Física “Gleb Wataghin, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil Universidade Estadual de Maringá, 82020-900, Maringá - PR, Brazil.
Pedro A. S. Autreto
Affiliation:
Instituto de Física “Gleb Wataghin, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil
Sergio B. Legoas
Affiliation:
Departamento de Física, CCT, Universidade Federal de Roraima, 69304-000, Boa Vista - RR, Brazil.
Douglas S. Galvao
Affiliation:
Instituto de Física “Gleb Wataghin, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil
Get access

Abstract

Using fully reactive molecular dynamics methodologies we investigated the structural and dynamical aspects of the fluorination mechanism leading to fluorographene formation from graphene membranes. Fluorination tends to produce significant defective areas on the membranes with variation on the typical carbon-carbon distances, sometimes with the presence of large holes due to carbon losses. The results obtained in our simulations are in good agreement with the broad distribution of values for the lattice parameter experimentally observed. We have also investigated mixed atmospheres composed by H and F atoms. When H is present in small quantities an expressive reduction on the rate of incorporation of fluorine was observed. On the other hand when fluorine atoms are present in small quantities in a hydrogen atmosphere, they induce an increasing on the hydrogen incorporation and the formation of locally self-organized structure of adsorbed H and F atoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Novoselov, K. S. et al. , Science 306, 666 (2004).Google Scholar
[2] Cheng, S. H. et al. , Phys. Rev. B 81, 205435 (2010).Google Scholar
[3] Withers, F., Duboist, M., and Savchenko, A.K., arxiv:1005.3474v1 (2010).Google Scholar
[4] Sofo, J., Chaudhari, A., and Barber, G., Phys. Rev. B 75, 153401 (2007).Google Scholar
[5] Ryu, S. et al. , Nano Lett. 8, 4597 (2008).Google Scholar
[6] Elias, D. et al. Science 323, 610 (2009).Google Scholar
[7] Sofo, J. O., Chaudhari, A. S., and, Barber, G. D., Phys. Rev. B 75, 153401 (2007).Google Scholar
[8] Lueking, D. et al. , J. Am. Chem. Soc. 128, 7758 (2006).Google Scholar
[9] Ray, N. R., Srivastava, A. K., and, Grotzsche, R., arXiv:0802.3998v1 (2008).Google Scholar
[10] Leenaerts, O., Peelaers, H., Hernandez-Nieves, A.D., et al. ; Phys. Rev. B 82, 195436 (2010).Google Scholar
[11] Cheng, S.-H., Zou, K., Okino, F., Gutierrez, H. R., Gupta, A., Shen, N., Eklund, P. C., Sofo, J. O., and Zhu, J., Phys. Rev. B 81, 205435 (2010).Google Scholar
[12] Nair, R. R. et al. , Small, 2010, 6, 27732914.Google Scholar
[13] Robinson, J. T. et al. , Nano Lett., in press, DOI: 10.1021/nl101437p.Google Scholar
[14] van Duin, A. C. T., Dasgupta, S., Lorant, F., and Goddard, W. A. III, J. Phys. Chem. A 105, 9396 (2001).Google Scholar
[15] van Duin, A. C. T. and Damste, J. S. S., Org. Geochem. 34, 515 (2003).Google Scholar
[16] Chenoweth, K., van Duin, A. C. T., and Goddard, W. A. III, J. Phys. Chem. A 112, 1040 (2008).Google Scholar
[17] Plimpton, S., J. of Comp. Phys., 117, 119 (1995).Google Scholar
[18] Flores, M. Z. S., Autreto, P. A. S., Legoas, S. B., and Galvao, D. S., Nanotechnology 20, 465704 (2009).Google Scholar