Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T14:39:57.868Z Has data issue: false hasContentIssue false

Diameter Dependent Current-Voltage Characteristics of InSb Nanowires

Published online by Cambridge University Press:  22 August 2011

Miroslav Penchev
Affiliation:
Department of Electrical Engineering, University of California, Riverside, CA, United States
Jiebin Zhong
Affiliation:
Department of Mechanical Engineering, University of California, Riverside, CA, United States
Jian Lin
Affiliation:
Department of Mechanical Engineering, University of California, Riverside, CA, United States
Cengiz S. Ozkan
Affiliation:
Department of Mechanical Engineering, University of California, Riverside, CA, United States
Mihrimah Ozkan
Affiliation:
Department of Electrical Engineering, University of California, Riverside, CA, United States
Get access

Abstract

Single crystalline Indium Antimonide (InSb) nanowires were synthesized by chemical vapor deposition (CVD) technique, using gold (Au) nanoparticles as catalyst, via a vapor liquid solid mechanism. Structural properties of the as-grown InSb nanowires were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Nanowire field effect transistors (NWFETs) were fabricated in back-gate configuration, on Si/SO2 substrates, using SiO2 as gate insulator. The diameter of InSb nanowires used in the fabricated devices varied from 15-80 nm. Current-voltage measurements were conducted to determine the dependence of NWFETs parameters on the InSb nanowire diameter. Carrier mobility was shown to decrease with decrease of nanowire diameter. Temperature dependen current-voltage measurements were conducted to determine the effect of operating temperature on the InSb NWFET device performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jin, S., Whang, D. M., McAlpine, M. C., Friedman, R. S., Wu, Y., Lieber, C. M., Nano Letters 4 (2004) 915–919.Google Scholar
2. Duan, X., Huang, Y., Cui, Y., Wang, J., Lieber, C. M., Nature 409 (2001) 66–69.Google Scholar
3. Bjork, M. T., Ohlsson, B. J., Thelander, C., Persson, A. I., Deppert, K., Wallenberg, L. R., Samuelson, L., Applied Physics Letters 81 (2002) 4458–4460.Google Scholar
4. Thelander, C., Agarwal, P., Brongersma, S., Eymery, J., Feiner, L. F., Forchel, A., Scheffler, M., Riess, W., Ohlsson, B. J., Gosele, U., Samuelson, L., Materials Today 9 (2006) 28–35.Google Scholar
5. Datta, S., Ashley, T., Brask, J., Buckle, L., Doczy, M., Emeny, M., Hayes, D., Hilton, K., Jefferies, R., Martin, T., (2005) 763–766.Google Scholar
6. Zhu, K., Shi, J., Chinese Physics Letters 15 (1998) 143–145.Google Scholar
7. Candebat, D., Zhao, Y., Sandow, C., Koshel, B., Yang, C., Appenzeller, J., InSb nanowire field-effect transistors - Electrical characterization and material analysis, in: Device Research Conference, 2009. DRC 2009, 2009, pp. 13–14.Google Scholar
8. Khan, I. M., Wang, X., Jing, X., Penchev, M., Ozkan, C. S., Ozkan, M., Journal of Nanoelectronics and Optoelectronics 3 (2008) 119–203.Google Scholar
9. Paul, R. K., Penchev, M., Zhong, J., Ozkan, M., Ghazinejad, M., Jing, X., Yengel, E., Ozkan, C. S., Materials Chemistry and Physics 121 (2010) 397–401.Google Scholar
10. Nilsson, H. A., Caroff, P., Thelander, C., Lind, E., Karlstrom, O., Wernersson, L.-E., Applied Physics Letters 96 (2010) 153505–153503.Google Scholar
11. Howard, R. E., Hu, E. L., Jackel, L. D., Ieee Transactions on Electron Devices 28 (1981) 1378–1381.Google Scholar
12. Caroff, P., Wagner, J. B., Dick, K. A., Nilsson, H. A., Jeppsson, M., Deppert, K., Samuelson, L., Wallenberg, L. R., Wernersson, L. E., Small 4 (2008) 878–882.Google Scholar
13. Seol, J. H., Moore, A. L., Saha, S. K., Zhou, F., Shi, L., Ye, Q. L., Scheffler, R., Mingo, N., Yamada, T., Journal of Applied Physics 101 (2007) 023706.Google Scholar
14. Thelander, C., Björk, M. T., Larsson, M. W., Hansen, A. E., Wallenberg, L. R., Samuelson, L., Solid State Communications 131 (2004) 573–579.Google Scholar
15. Huang, Y., Duan, X., Cui, Y., Lieber, C. M., Nano Letters 2 (2002) 101–104.Google Scholar
16. Wunnicke, O., Applied Physics Letters 89 (2006) 3.Google Scholar
17. Lee, S.-W., Ham, M.-H., Kar, J. P., Lee, W., Myoung, J.-M., Microelectronic Engineering 87 (2010) 10–14.Google Scholar
18. Suh, D. I., Lee, S. Y., Hyung, J. H., Kim, T. R., Lee, S. K., Journal of Physical Chemistry C 112 (2008) 1276–1281.Google Scholar
19. Choi, S. Y., Fung, W. Y., Lu, W., Applied Physics Letters 98 (2011).Google Scholar