Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-29T11:46:49.026Z Has data issue: false hasContentIssue false

Impurity-related vibrational modes in a pentacene crystal

Published online by Cambridge University Press:  11 August 2011

G. Volonakis*
Affiliation:
Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
L. Tsetseris
Affiliation:
Department of Physics, National Technical University of Athens, Athens, Greece Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA
S. Logothetidis
Affiliation:
Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
Get access

Abstract

The presence of impurities in the molecular crystals of organic semiconductors is a key limiting factor for the performance of related electronic devices. For this reason, the atomic-scale details of impurity incorporation are important elements for modeling and optimization of organic electronic systems. In this article, we use first-principles density-functional theory calculations to describe the vibrational spectrum of typical impurity culprits in the prototype organic semiconductor pentacene. First, we validate the computational approach by comparing results on vibrational modes of impurity-free pentacene with available theoretical and experimental data. We then analyze the effect of oxygen, water, and hydrogen impurities on the modes of pentacene crystals. The results identify distinct impurity-related features which can help understand the evolution of impurities in pentacene samples.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Knipp, D., J. Appl. Phys. 101, 044504 (2007)CrossRef
Zhu, Z., Appl. Phys. Lett. 81, 4643 (2002)CrossRef
Rusu, M., Appl. Phys. Lett. 90, 153511 (2007)CrossRef
Mitrofanov, O., Phys. Rev. Lett. 97, 166601 (2006)CrossRef
Yang, Y.S., Appl. Phys. Lett. 80, 1595 (2002)CrossRef
Maliakal, A., Chem. Mater. 16, 4980 (2004)CrossRef
Lee, C., Phys. Rev. B 49, 10572 (1994)CrossRef
Matsushima, T., Appl. Phys. Lett. 91, 103505 (2007)CrossRef
Jurchescu, O.D., Appl. Phys. Lett. 87, 052102 (2005)CrossRef
Tsetseris, L., Phys. Rev. B 75, 153202 (2007)CrossRef
Northrup, J., Phys. Rev. B 68, 041202 (2003)CrossRef
Tsetseris, L., Phys. Rev. B 78, 115205 (2008)CrossRef
Tsetseris, L., Org. Electron. 10, 333 (2009)CrossRef
Tsetseris, L., Phys. Rev. B 82, 045201 (2010)CrossRef
Cheng, H., Org. Electron. 10, 289 (2009)CrossRef
Yamakita, Y., J. Chem. Phys. 126, 064904 (2007)CrossRef
Langhoff, S.R., J. Phys. Chem. 100, 2819 (1996)CrossRef
He, R., Appl. Phys. Lett. 94, 223310 (2009)CrossRef
Kresse, G., Phys. Rev. B 54, 11169 (1996)CrossRef
Vanderbilt, D., Phys. Rev. B 41, 7892 (1990)CrossRef
Perdew, J., Phys. Rev. B 23, 5048 (1981)CrossRef
Campbell, R., Acta Cryst. 14, 705 (1961)CrossRef
Campbell, R., Acta Cryst. 15, 289 (1962)CrossRef
Lee, K., Surf. Sci. 603, 3445 (2009)CrossRef
Lang, D., Phys. Rev. Lett. 93, 076601 (2004)CrossRef