Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T14:57:22.841Z Has data issue: false hasContentIssue false

Large Dynamic Range Simulations of Galaxies Hosting Supermassive Black Holes

Published online by Cambridge University Press:  12 August 2011

Robyn Levine*
Affiliation:
Canadian Institute for Theoretical Astrophysics, 60 St. George St., Toronto, ON, M6G 1A6, Canada email: levine@cita.utoronto.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The co-evolution of supermassive black holes (SMBHs) and their host galaxies is a rich problem, spanning a large-dynamic range and depending on many physical processes. Simulating the transport of gas and angular momentum from super-galactic scales all the way down to the outer edge of the black hole's accretion disk requires sophisticated numerical techniques with extensive treatment of baryonic physics. We use a hydrodynamic adaptive mesh refinement simulation to follow the growth and evolution of a typical disk galaxy hosting an SMBH, in a cosmological context (covering a dynamical range of 10 million!). We have adopted a piecemeal approach, focusing our attention on the gas dynamics in the central few hundred parsecs of the simulated galaxy (with boundary conditions provided by the larger cosmological simulation), and beginning with a simplified picture (no mergers or feedback). In this scenario, we find that the circumnuclear disk remains marginally stable against catastrophic fragmentation, allowing stochastic fueling of gas into the vicinity of the SMBH. I will discuss the successes and the limitations of these simulations, and their future direction.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Berti, E. & Volonteri, M. 2008, ApJ, 684, 822CrossRefGoogle Scholar
Bondi, H. 1952, MNRAS, 112, 195CrossRefGoogle Scholar
Colberg, J. & Di Matteo, T. 2008, MNRAS, 387, 1163Google Scholar
Croft, R. A. C., Di Matteo, T., Springel, V., & Hernquist, L. 2009, MNRAS, 400, 43CrossRefGoogle Scholar
Di Matteo, T., Colberg, J., Springel, V., Hernquist, L., & Sijacki, D. 2008, ApJ, 676, 33Google Scholar
Escala, A. 2007, ApJ, 671, 1264CrossRefGoogle Scholar
Ferland, et al. 1998, PASP, 110, 761CrossRefGoogle Scholar
Ferrarese, L. & Merritt, D. 2000, ApJL, 539, L9CrossRefGoogle Scholar
Gebhardt, K. et al. 2000, ApJL, 539, L13CrossRefGoogle Scholar
Ghez, A. M. et al. 2008, ApJ, 689, 1044CrossRefGoogle Scholar
Hopkins, P. F. & Quataert, E. 2010, MNRAS, pub. online 21 July, 2010Google Scholar
King, A. R., Pringle, J. E., & Hofmann, J. A. 2008, MNRAS, 385, 1621Google Scholar
King, A. R. & Pringle, J. E. 2007, MNRAS, 377, L25Google Scholar
Kormendy, J. & Richstone, D. 1995, ARAA, 33, 581Google Scholar
Kravtsov, A. V., Klypin, A. A., & Khokhlov, A. M. 1997, ApJS, 111, 73Google Scholar
Kravtsov, A. V. 1999, Ph.D. Thesis, New Mexico State UniversityGoogle Scholar
Kravtsov, A. V., Klypin, A. A., & Hoffman, Y. 2002, ApJ, 571, 563CrossRefGoogle Scholar
Levine, R., Gnedin, N. Y., Hamilton, A. J. S., & Kravtsov, A. V. 2008, ApJ, 678, 154Google Scholar
Levine, R. 2008, Simulating the growth of a disk galaxy and its supermassive black hole in a cosmological context, Ph.D. thesis, University of Colorado at BoulderGoogle Scholar
Levine, R., Gnedin, N. Y., & Hamilton, A. J. S. 2010, ApJ, 716, 1386CrossRefGoogle Scholar
Magorrian, J. et al. 1998, AJ, 115, 2285CrossRefGoogle Scholar
Sijacki, D., Springel, V., Di Matteo, T., & Hernquist, L. 2007, MNRAS, 380, 877Google Scholar
Tremaine, S. et al. 2002, ApJ, 574, 740Google Scholar
Volonteri, M., Sikora, M., & Lasota, J. P. 2007, ApJ, 667, 704CrossRefGoogle Scholar
Wada, K. 2001, ApJL, 559, L41Google Scholar
Wada, K. & Norman, C. A. 2001, ApJ, 547, 172Google Scholar