Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-20T13:17:23.078Z Has data issue: false hasContentIssue false

Strong Photoluminescence in the Near-Infrared from Colloidally-Prepared HgTe Nanocrystals

Published online by Cambridge University Press:  09 August 2011

M. T. Harrison
Affiliation:
BT Laboratories, Martlesham Heath, Ipswich, Suffolk, IP5 3RE, UK
S. V. Kershaw
Affiliation:
BT Laboratories, Martlesham Heath, Ipswich, Suffolk, IP5 3RE, UK
M. G. Burt
Affiliation:
BT Laboratories, Martlesham Heath, Ipswich, Suffolk, IP5 3RE, UK
A. L. Rogach
Affiliation:
Institut für Physikalische Chemie, Universität Hamburg, 20146 Hamburg, Germany.
A. Kornowski
Affiliation:
Institut für Physikalische Chemie, Universität Hamburg, 20146 Hamburg, Germany.
A. Eychmüller
Affiliation:
Institut für Physikalische Chemie, Universität Hamburg, 20146 Hamburg, Germany.
H. Weller
Affiliation:
Institut für Physikalische Chemie, Universität Hamburg, 20146 Hamburg, Germany.
Get access

Abstract

We report here the first measurement of strong near-infrared room temperature photoluminescence (PL) from colloidally-prepared HgTe nanocrystals. X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) measurements indicate that the nanoparticles are in the cubic coloradoite phase, with a diameter of approximately 4 nm. The absorption spectrum shows a pronounced electronic transition in the near-infrared, and the broad PL appears to consist of several overlapping features between 800 and 1400 nm with a peak at 1080 nm, which represent a dramatic shift from bulk HgTe behaviour. The quantum efficiency (QE) of the freshly prepared sample is around 50%, which is among the highest ever reported for a nanocrystalline material. Over a period of several days, the luminescence shifts further into the infrared yielding more dominant longer wavelength features. The observation of this strong infrared luminescence makes this material a promising candidate for application in optical telecommunication systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Efros, Al. L. and Efros, A. L., Sov. Phys. – Semicond. 16, p. 772 (1982).Google Scholar
2. Rossetti, R., Nakahara, S., and Brus, L. E., J. Chem. Phys. 79, p. 1,086 (1983).Google Scholar
3. Weller, H., Angew. Chem. Int. Ed. Engl. 32, p. 41 (1993).Google Scholar
4. Weller, H., Adv. Mater. 5, p. 88 (1993).Google Scholar
5. Alivisatos, A. P., J. Phys. Chem. 100, p. 13,226 (1996).Google Scholar
6. Zhang, J. Z., Acc. Chem. Res. 30, p. 423 (1997).Google Scholar
7. Klein, D. L., Roth, R., Lim, A. K. L., Alivisatos, A. P., and McEuen, P. L., Nature 389, p. 699 (1997).Google Scholar
8. Feldheim, D. L. and Keating, C. D., Chem. Soc. Rev. 28, p. 1(1998).Google Scholar
9. Colvin, V. L., Schlamp, M. C., and Alivisatos, A. P., Nature, 370, p. 354 (1994).Google Scholar
10. Dabbousi, B. O., Bawendi, M. G., Onitsuka, O., and Rubner, M. F., Appl. Phys. Lett. 66, p. 1,316 (1995).Google Scholar
11. Gao, M., Richter, B., Kirstein, S., and Möhwald, H., J. Phys. Chem. B. 102, p. 4,096 (1998).Google Scholar
12. Landolt-Bornstein, , Numerical Data and Functional Relationships in Science and Technology: New Series. Vol.17b: Semiconductors, Springer-Verlag, Berlin, (1982), p. 239 & 465.Google Scholar
13. Rajh, T., Micic, O. I., and Nozik, A. J., J. Phys. Chem. 97, p. 11,999 (1993).Google Scholar
14. Hässelbarth, A., Eychmüller, A., Eichberger, R., Giersig, M., Mews, A., and Weller, H., J. Phys. Chem. 97, p. 5,333 (1993).Google Scholar
15. Vossmeyer, T., Katsikas, L., Giersig, M., Popovic, I. G., Diesner, K., Chemseddine, A., Eychmüller, A., and Weller, H., J. Phys. Chem. 98, p. 7,665 (1994).Google Scholar
16. Rogach, A. L., Katsikas, L., Kornowski, A., Su, D., Eychmüller, A., and Weller, H., Ber. Bunsenges. Phys. Chem. 100, p. 1,772 (1996).Google Scholar
17. Kakudo, Masao and Kasai, Nobutami, X-Ray Diffraction by Polymers, Kodansha Scientific, Tokyo, (1972), p. 329.Google Scholar