Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T18:12:02.741Z Has data issue: false hasContentIssue false

Photocatalytic reforming of formic acid with simultaneous hydrogen production under visible light over CdS sensitized Na2Ti2O4(OH)2

Published online by Cambridge University Press:  29 July 2011

Wendong Tang
Affiliation:
State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, P. R. China
Dengwei Jing
Affiliation:
State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, P. R. China
Liejin Guo
Affiliation:
State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, P. R. China
Get access

Abstract

The present work reports the renewable hydrogen production by an anaerobic photocatalytic reforming of formic acid over CdS sensitized Na2Ti2O4(OH)2 nanotubes. the Na2Ti2O4(OH)2 nanotube was prepared and charactered by X-ray diffraction, UV-visible absorption, transmission electron microscopy, etc. The activity of the catalyst in formic acid was investigated. The greatest photocatalytic reforming activity of formic acid occurs as the formic acid initial concentration is 20 v.%. A probable mechanism for the photocatalytic reforming process was proposed and discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kudo, A., Miseki, Y., Chem. Soc. Rev. 38, 253278 (2002).10.1039/B800489GGoogle Scholar
2. Maeda, K., Teramura, K., Lu, D., Takata, T., Saito, N., Inoue, Y. and Domen, K., Nature 295, 440 (2006).Google Scholar
3. Khan, S. U. M., Al-Shahry, M., Ingler, W. B. Jr., Science 297, 2242 (2002).10.1126/science.1075035Google Scholar
4. Kapoor, M. P., Inagaki, S., and Yoshida, H., J. Phys. Chem. B 109, 92319238 (2005).10.1021/jp045012bGoogle Scholar
5. Konta, R., Ishii, T., Kato, H. and Kudo, A., J. Phys. Chem. B 108, 8992 (2004).10.1021/jp049556pGoogle Scholar
6. Tawkaew, S., Fujishiro, Y., Yin, S. and Sato, T., Colloids Surf. A 139, 179 (2001).Google Scholar
7. Reber, J. F. and Rusek, M., J. Phys. Chem. 90, 824(1986).10.1021/j100277a024Google Scholar
8. Tsuji, I., Kato, H., Kobayashi, H. and Kudo, A., J. Am. Chem. Soc. 41, 13406 (2004).10.1021/ja048296mGoogle Scholar
9. Tsuji, I., Kato, H. and Kudo, A., Angew. Chem. Int. Ed. 44, 3565 (2005).10.1002/anie.200500314Google Scholar
10. Fujishima, A., Honda, K., Nature 238, 37 (1972).10.1038/238037a0Google Scholar
11. Ni, M., Leung, M. K.H., Leung, D. Y.C. and Sumathy, K., Renewable and Sustainable Energy Reviews 126(2005).Google Scholar
12. Galińska, A. and Walendziewski, J., Energy Fuels 19(3), 11431147(2005)10.1021/ef0400619Google Scholar
13. , H. Werner, A. F. and Bauer, R., International Journal of Hydrogen Energy 21(8), 643650(1996).10.1016/0360-3199(95)00115-8Google Scholar
14. Bamwenda, G.R., Tsubota, S., Nakamura, T. and Harura, M., J. Photochem. Photobiol. A 89, 177 (1995).10.1016/1010-6030(95)04039-IGoogle Scholar
15. Sakata, T., Kawai, T., Chem. Phys. Lett. 80, 341(1981).10.1016/0009-2614(81)80121-2Google Scholar
16. Zalas, M., Laniecki, M., Sol. Energy Mater. Sol. Cells 89, 287(2005).10.1016/j.solmat.2005.02.014Google Scholar
17. Bamwenda, G.R., Tsubota, S., Kobayashi, T., Haruta, M., J. Photochem. Photobiol. A 59, 77 (1994).Google Scholar
18. Enea, O., Electrochim. Acta 31, 405(1986).10.1016/0013-4686(86)80098-6Google Scholar
19. St. John, M.R., Furgala, A.J., Sammells, A.F., J. Phys. Chem. 87, 801(1983).10.1021/j100228a021Google Scholar
20. Li, Y., Lu, G., Li, S., Appl. Catal. A 179, 214 (2001).Google Scholar
21. Hashimoto, K., Kawai, T., Sakata, T., J. Phys. Chem. 88 (1984) 4083.10.1021/j150662a046Google Scholar
22. Comini, E., Faglia, G., Sberveglieri, G., Li, Y., Wlodarski, W., Ghantasala, M.K.. Sensors and Actuators B 64, 169174(2000).10.1016/S0925-4005(99)00502-XGoogle Scholar
23. Li, Y., Xie, Y., Peng, S., Lu, G., Li, S.. Chemosphere 63, 13121318(2006).10.1016/j.chemosphere.2005.09.004Google Scholar
24. Fu, X., Long, J., Wang, X., Leungb, Dennis Y.C., Ding, Z., Wu, L., Zhang, Z., Li, Z., Fu, X., International Journal of Hydrogen Energy 33, 64846491(2008).10.1016/j.ijhydene.2008.07.068Google Scholar
25. Patsoura, A., Kondarides, D. I., Verykios, X. E., Catalysis Today 124, 94102, (2007)10.1016/j.cattod.2007.03.028Google Scholar
26. Du, G.H., Chen, Q., Che, R.C., Yuan, Z.Y., Peng, L.M., Appl. Phys. Lett. 79, 3702 (2001).10.1063/1.1423403Google Scholar
27. Xing, C., Jing, D., Liu, M., Guo, L., Materials Research Bulletin 44, 442445(2009).10.1016/j.materresbull.2008.04.016Google Scholar
28. Yang, J., Jin, Z., Wang, X., Li, W., Zhang, J., Zhang, S., Guo, X., Zhang, Z., J. Chem. Soc., Dalton Trans. 14, 3898(2003).10.1039/b305585jGoogle Scholar
29. Chatterjee, D., Dasgupta, S., J. Photochem. Photobiol. C 6, 186(2005).10.1016/j.jphotochemrev.2005.09.001Google Scholar
30. Linsebigler, A.L., Lu, G., Yates, J. T. Jr., Chem. Rev. 95, 735(1995).10.1021/cr00035a013Google Scholar
31. Dey, G. R., Nair, K. N. R., Pushpa, K. K., Journal of Natural Gas Chemistry 18, 5054(2009).10.1016/S1003-9953(08)60075-4Google Scholar