Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-16T08:39:47.613Z Has data issue: false hasContentIssue false

Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic

Published online by Cambridge University Press:  03 November 2011

Bor-ming Jahn
Affiliation:
Géosciences Rennes, Université de Rennes1, 35042 Rennes Cedex,France. e-mail: jahn@univ-rennesl.fr
Fuyuan Wu
Affiliation:
Géosciences Rennes, Université de Rennes1, 35042 Rennes Cedex,France; Department of Geology, Changchun University of Science and Technology, Changchun 130061, China.
Bin Chen
Affiliation:
Géosciences Rennes, Université de Rennes1, 35042 Rennes Cedex,France; Department of Geology, Peking University, Beijing, China.

Abstract

The Central Asian Orogenic Belt (CAOB), also known as the Altaid Tectonic Collage, is characterised by a vast distribution of Paleozoic and Mesozoic granitic intrusions. The granitoids have a wide range of compositions and roughly show a temporal evolution from calcalkaline to alkaline to peralkaline series. The emplacement times for most granitic plutons fall between 500 Ma and 100 Ma, but only a small proportion of plutons have been precisely dated. The Nd-Sr isotopic compositions of these granitoids suggest their juvenile characteristics, hence implying a massive addition of new continental crust in the Phanerozoic. In this paper we document the available isotopic data to support this conclusion.

Most Phanerozoic granitoids of Central Asia are characterised by low initial Sr isotopic ratios, positive εNd(T) values and young Sm—Nd model ages (TDM) of 300-1200 Ma. This is in strong contrast with the coeval granitoids emplaced in the European Caledonides and Hercynides. The isotope data indicate their ‘juvenile’ character and suggest their derivation from source rocks or magmas separated shortly before from the upper mantle. Granitoids with negative εNd(T) values also exist, but they occur in the environs of Precambrian microcontinental blocks and their isotope compositions may reflect contamination by the older crust in the magma generation processes.

The evolution of the CAOB is probably related to accretion of young arc complexes and old terranes (microcontinents). However, the emplacement of large volumes of post-tectonic granites requires another mechanism, probably through a series of processes including underplating of massive basaltic magma, intercalation of basaltic magma with lower crustal granulites, partial melting of the mixed lithologic assemblages leading to generation of granitic liquids, followed by extensive fractional crystallisation. The proportions of the juvenile or mantle component for most granitoids of Central Asia are estimated to vary from 70% to 100%.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ajaji, T., Weis, D., Giret, A.& Bouabdellah, M. 1998. Coeval potassic and sodic calc-alkaline series in the post-collisional Hercynian Tanneherfi intrusive complex, northeastern Morocco: Geochemical, isotopic and geochronological evidence. Lithos 45, 371–93.Google Scholar
Anderson, J. L. and Morrison, J. 1992. The role of anorogenic granites in the Protcorozic crustal development of North America. In Condie, K. C. (ed.) Proterozoic Crustal Evolution, 263–99, Amsterdam: Elsevier.Google Scholar
Arakawa, Y., Saito, Y.& Amakawa, H. 2000. Crustal development of the Hida belt, Japan: Evidence from Nd-Sr isotopic and chemical characteristics of igneous and metamorphic rocks. Tectonophysics (in press).Google Scholar
Arakawa, Y.& Shimura, T. 1995. Nd-Sr isotopic and geochemical characteristics of two contrasting types of calc-alkaline plutons in the Hida belt, Japan. Chemical Geology 124, 217–32.Google Scholar
Armstrong, R. L. 1968. A model for Sr and Pb isotope evolution in a dynamic earth. Review of Geophysics 6, 175–99.Google Scholar
Armstrong, R. L. 1981. Radiogenic isotopes: The case for crustal recycling on a near-steady state no-continental-growth Earth. Philosophical Transactions of the Royal Society of London Ser. A 301, 443–72.Google Scholar
Armstrong, R. L. 1991. The persistent myth of crustal growth. Australian Journal of Earth Sciences 38, 613–30.Google Scholar
Arndt, N. T.& Goldstein, S. L. 1987. Use and abuse of crust-formation ages. Geology 15, 893–5.Google Scholar
Azevedo, M. R.& Nolan, J. 1998. Hercynian late-post-tectonic granitic rocks from the Fornos de Algodres area (Northern Central Portugal). Lithos 44, 120.Google Scholar
Bau, M. 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous system: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology 123, 323–33.Google Scholar
Ben Othman, D., Fourcade, S.& Allegre, C. J. 1984. Recycling processes in granite-granodioritc complex genesis: the Querigut case studied by Nd-Sr isotope systematics. Earth and Planetary Science Letters 69, 290300.Google Scholar
Bernard-Griffiths, J., Peucat, J. J., Sheppard, S.& Vidal, P. 1985. Petrogenesis of Hercynian leucogranites from the southern Armorican Massif: contribution of REE and isotopic (Sr, Nd, Pb, and O) geochemical data to the study of source rock characteristics and ages. Earth and Planetary Science Letters, 74, 235–50.Google Scholar
Charoy, B.& Raimbault, L. 1994. Zr-, Th- and REE-rich biotite differentiates in the A-type granites pluton of Suzhou (eastern China): the key role of fluorine. Journal of Petrology 35, 919–62.Google Scholar
Chen, B., Jahn, B. M., Wilde, S.& Xu, B. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: petrogenesis and tectonic implications. Tectonophysics (in press).Google Scholar
Chen, J. F., Man, F. S.& Ni, S. B. 1995. Nd and Sr isotopic geochemistry of mafic-ultramafic intrusions from Qinbulake, West Tianshan Mountain, Xinjiang. Geochimica 24, 121–7 (in Chinese with English abstract).Google Scholar
Cluzel, D. 1991. Late Palaeozoic to early Mesozoic geodynamic evolution of the circum-Pacific orogenic belt in South Korea and Southwest Japan. Earth and Planetary Science Letters, 108, 289305.Google Scholar
Cocherie, A., Rossi, Ph., Fouillac, A. M.& Vidal, Ph. 1994. Crust and mantle contributions to granite genesis: An example from the Variscan batholith of Corsica, France, studied by trace-element and Nd—Sr—O isotope systemetics. Chemical Geology 115, 173211.Google Scholar
Coleman, R. G. 1989. Continental growth of northwest China. Tectonics 8, 621–35.Google Scholar
Collins, W. J. 1996. Lachlan Fold Belt granitoids: products of threecomponent mixing. Transactions of the Royal Society of Edinburgh: Earth Sciences 87, 171–81.Google Scholar
Collins, W. J. 1998. Evaluation of petrogenetic models for Lachlan Fold Belt granitoids: implications for crustal architecture and tectonic models. Australian Journal of Earth Sciences 45, 483500.Google Scholar
Collins, W. J., Beams, S. D., White, A. J. R.& Chappell, B. W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology 80, 189200.Google Scholar
Costa, S. and Rey, P. 1995. Lower crustal rejuvenation and growth during post-thickening collapse: Insights from a crustal cross section through a Variscan metamorphic core complex. Geology 23, 905908.Google Scholar
Creaser, R. A., Price, R. C.& Wormald, R. J. 1991. A-type granites revisited: assessment of a residual-source model. Geology 19, 163–6.Google Scholar
Darbyshire, D. P. F.& Sewell, R. J. 1997. Nd and Sr isotope geochemistry of plutonic rocks from Hong Kong: implications for granite petrogenesis, regional structure and crustal evolution. Chemical Geology 143, 8193.Google Scholar
Darbyshire, D. P. F.& Shepherd, T. J. 1994. Nd and Sr isotope constraints on the origin of the Cornubian batholith, SW England. Journal of the Geological Society of London 151, 795802.Google Scholar
Dempsey, C. S., Halliday, A. N.& Meighan, I. G. 1990. Combined Sm-Nd and Rb-Sr isotope systematics in the Donegal granitoids and their petrogenic implications. Geological Magazine 127, 7580.Google Scholar
Deniel, C., Vidal, P., Fernandez, A., Le Fort, P.& Peucat, J. J. 1987. Isotopic study of the manaslu granite (Himalaya, Nepal): Inferences on the age and source of Himalayan leucogranites. Contributions to Mineralogy and Petrology 96, 7892.Google Scholar
DePaolo, D.J. 1981. A neodynium and strontium isotopic study of the Mesozoic calc-alkaline granitic batholiths of the Sirra Nevada and Peninsular Ranges, California. Journal of Geophysical Research 86, 10470–88.Google Scholar
DePaolo, D. J., Linn, A. M.&Schubert, G. 1991. The continental crustal age distribution: Methods of determining mantle separation ages from Sm-Nd isotopic data and application to the Southeastern United States. Journal of Geophysical Research, 96, 2071–88.Google Scholar
Dias, G.& Leterrier, J. 1994. The genesis of felsic-mafic plutonic associations: A Sr and Nd isotopic study of the Hercynian Braga granitoid Massif (Northern Portugal). Lithos 32, 207–23.Google Scholar
Dobretsov, N. L., Berzin, N. A.& Buslov, M. M. 1995. Opening and tectonic evolution of the Paleo-Asian ocean. International Geology Review 37, 335360.Google Scholar
Downes, H., Shaw, A., Williamson, B. J.& Thirlwall, M.F. 1997. Sr, Nd and Pb isotope geochemistry of the Hercynian granodiorites and monzogranites, Massif Central, France. Chemical Geology 136, 99122.Google Scholar
Downes, H.& Duthou, J. L. 1988. Isotopic and trace-element arguments for the lower-crustal origin of Hercynian granitoids and Pre-Hercynian orthogeneisses, Massif Central (France). Chemical Geology 68, 291308.Google Scholar
Eberz, G. W., Nicholls, I. A., Mass, R., McCulloch, M. T.& Whiteford, D. J. 1990. The Nd— and Sr—isotopic composition of I-type microgranitoid enclaves and their host rocks from the Swifts Creek pluton, southeast Australia. Chemical Geology 85, 119–34.Google Scholar
Eby, G.N. 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20, 641–1.Google Scholar
Fang, W. C. 1992. Granitoids and mineralisation in Jilin Province. Jilin, China: Jilin Science and Technology Publishing House.Google Scholar
Farmer, G. L.& DePaolo, D. L. 1983. Origin of Mesozoic and Tertiary granite in the Western United States and implications for Pre-Mesozoic crustal structure 1: Nd and Sr isotopic studies in the Geocline of the Northern Great Basin. Journal of Geophysical Research 88, 3379–401.Google Scholar
Feng, Y., Coleman, R. G.& Tilton, G. 1989. Tectonic evolution of the West Junggar region, Xinjiang, China. Tectonics 8, 729–52.Google Scholar
Foland, K. A.& Allen, J. C. 1991. Magma sources for Mesozoic anorogenic granites of the White Mountain magma series, New England, U.S.A. Contributions to Mineralogy and Petrology 109, 195211.Google Scholar
Forster, H. J., Tischendorf, G., Trumbull, R. B.& Gottesmann, B. 1999. Late-collisional granites in the Variscan Erzgebirge, Germany. Journal of Petrology 40, 1613–45.Google Scholar
Frost, C. D.& O'Nions, R. K. 1985. Caledonian magma genesis and crustal recycling. Journal of Petrology 26, 515–44.Google Scholar
Gazis, C. A., Blum, J. D., Chamberlain, C. P.& Poage, M. 1998. Isotope systematics of granites and gneisses of the Nanga Parbat-Massif, Pakistan Himalaya. American Journal of Science 298, 673–98.Google Scholar
Hadj-Kaddour, Z., Liégeois, J. P., Demaiffe, D.& Caby, R. 1998. The alkaline-peralkaline granitic post-collisional Tin Zebane dyke swarm (Pan-African Tuareg shield, Algeria): prevalent mantle signature and late agpaitic differentiation. Lithos 45, 223–43.Google Scholar
Halliday, A. N. 1984. Coupled Sm-Nd and U-Pb systematics in late Caledonian granites and the basement under northern Britain. Nature 307, 229–33.Google Scholar
Hamilton, P. J., O'Nions, R. K.& Pankhurst, R. J. 1980. Isotopic evidence for the provenance of some Caledonian granites. Nature 287, 279–84.Google Scholar
Han, B. F., Wang, S. G., Jahn, B. M., Hong, D. W., Kagami, H.& Sun, Y. L. 1997. Depleted-mantle magma source for the Ulungur River A-type granites from north Xinjiang, China: geochemistry and Nd–Sr isotopic evidence, and implication for Phanerozoic crustal growth. Chemical Geology 138, 135–59.Google Scholar
Harrison, T. M., Grove, M., McKeegan, K. D., Coath, C. D., Lovera, O. M.& Le Fort, P. 1999. Origin and episodic emplacement of the Manaslu intrusive complex, Central Himalaya. Journal of Petrology 40, 319.Google Scholar
Heinhorst, J., Lehmann, B., Ermolov, P., Serykh, V.& Zhurutin, S. 2000. Paleozoic crustal growth and metallogeny of Central Asia: evidence from magmatic-hydrothermal ore systems of Central Kazakhstan. Tectonophysics (in press).Google Scholar
Hensel, H. D., McCulloch, M. T.& Chappell, B. W. 1985. The New England Batholith: Constraints on its derivation from Nd and Sr isotopic studies of granitoids and country rocks. Geochimica Cosmochimica Acta, 49, 369–84.Google Scholar
Hirooka, K., Nakajima, T., Sakai, H., Date, T., Nittamachi, K.& Hattori, I. 1983. Accretion Tectonics inferred from paleomagnetic measurements of Paleozoic and Mesozoic rocks in central Japan. In Hashimoto, M. and Uyeda, S. (eds) Accretion Tectonics in the Circum-Pacific Regions, 179–94. Tokyo: Terra Science.Google Scholar
Hong, D. W., Huang, H. Z., Xiao, Y. J., Xu, H. M.& Jin, M. Y. 1995. Permian alkaline granites in central Inner Mongolia and their geodynamic significance. Acta Geologica Sinica 8, 2739.Google Scholar
Hong, D. W., Wang, S.G., Han, B. F.& Jin, M. Y. 1996. Post-orogenic alkaline granites from China and comparisons with anorogenic alkaline granites elsewhere. Journal of SE Asian Earth Sciences 13, 1327.Google Scholar
Hu, A. Q., Jahn, B. M., Zhang, G.& Zhang, Q. 2000. Crustal evolution and Phanerozoic crustal growth in Northern Xinjiang: Nd—Sr isotopic evidence. Part I: Isotopic characterisation of basement rocks. Tectonophysics (in press).Google Scholar
Inger, S.& Harris, N. 1993. Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. Journal of Petrology 34, 345–68.Google Scholar
Irber, W. 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochimica Cosmochimica Acta 63, 489508.Google Scholar
Jahn, B. M., Zhou, X. H.& Li, J. L. 1990. Formation and tectonic evolution of southeastern China and Taiwan: Isotopic and geochemical constraints. Tectonophysics 183, 145–60.Google Scholar
Jahn, B. M., Wu, F. Y., Capdevila, R., Wang, Y. X.& Zhao, Z. H. 1999. Highly evolved juvenile granites with tetrad REE patterns: The Woduhe and Baerzhe granites from the Great Xing'an (Khingan) Mountain in NE China. In Bardach, G.& Jahn, B. M. (eds) IGCP420 2nd Workshop, Ulaanbaator, Abstract volume, Hors Série 2, 42–6. Rennes: Géosciences Rennes.Google Scholar
Jahn, B. M., Wu, F. Y.& Hong, D. W. 2000. Important crustal growth in the Phanerozoic: Isotopic evidence of granitoids from Eastcentral Asia. Gopalan festchrift volume, Proceedings of the Indian Academy of Sciences 109, 520.Google Scholar
Javoy, M.& Weis, D. 1987. Oxygen isotopic composition of alkaline anorogenic granites as a clue to their origin: the problem of crustal oxygen. Earth and Planetary Science Letters 84, 415–22.Google Scholar
Jin, C. W.& Zhang, X. Q. 1993. A geochronology and genesis of the western Junggar granitoids, Xinjiang, China. Scientia Geologica Sinica 28, 2836 [in Chinese with English abstract].Google Scholar
Keay, S., Collins, W. J.& McCulloch, M. T. 1997. A three-component Sr–Nd isotopic mixing model for granitoid genesis, Lachlan fold belt, eastern Australia. Geology 25, 307–10.Google Scholar
Khan, I. H., Suzuki, K., Shibata, K.& Adachi, M. 1995. Late Permian CHIME ages of the Hida Gneiss and early Triassic age of the Mizunashi Granite in the Amo area of the Hida terrane, central Japan. Journal of Earth and Planetary Sciences, Nagoya University, Japan 42, 3143.Google Scholar
King, P. L., White, A. J. R., Chappell, B. W.& Allen, C. M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology 38, 371–91.Google Scholar
Kojima, S. 1989. Mesozoic terrane accretion in Northeast China, Sikhote-Alin and Japan regions. Paleogeography, Paleoclimatology, Paleoecology 69, 213–32.Google Scholar
Kovalenko, V. I., Tsareva, G. M., Yarmolyuk, V. V., Troisky, V. A., Farmer, G. L.& Chernishev, I. V. 1992. Sr—Nd isotopic compositions and the age of rare-metal peralkaline granitoids from western Mongolia. Dokladi Akademiia Nauk 237, 570–4 [in Russian].Google Scholar
Kovalenko, V., Yarmolyuk, V.& Bogatikov, O. 1995. Magmatism, geodynamics, and metallogeny of Central Asia. Moscow: Miko Commercial Herald Publishers.Google Scholar
Kovalenko, V. I., Yarmolyuk, V. V., Kovach, V. P., Kotov, A. B., Kozakov, I. K.& Sal'nikova, E. B. 1996. Sources of Phanerozoic granitoids in Central Asia: Sm—Nd isotope data. Geochemical International 34, 628–40.Google Scholar
Kozakov, I. K., Kotov, A. B., Kovach, V. P.& Sal'nikova, E. B. 1997. Crustal growth in the geological evolution of the Baidarik block, central Mongolia: Evidence from Sm—Nd isotopic systematics. Petrologiya 5, 227–35. [Translated in: Petrology 5, 201-207.]Google Scholar
Kuzmin, M. I.& Antipin, V. S. 1993. Geochemical types of granitoids of the Mongol-Okhotsk belt and their geodynamic settings. Chinese Journal of Geochemistry 12, 110–17.Google Scholar
Kwon, S. T., Tilton, G. R., Coleman, R. G.& Feng, Y. 1989. Isotopic studies bearing on the Tectonics of the west Junggar region, Xinjiang, China. Tectonics 8, 719–27.Google Scholar
Landenberger, B.& Collins, W. J. 1996. Derivation of A-type granites from a dehydrated charnocktic lower crust: evidence from the Chaelundi Complex, eastern Australia. Journal of Petrology 37, 145170.Google Scholar
Liew, T. C., Finger, F.& Hock, V. 1989. The Moldanubian granitoid plutons of Austria: Chemical and isotopic studies bearing on their environmental setting. Chemical Geology 76, 4155.Google Scholar
Liew, T. C.& Hofmann, A. W. 1988. Precambrian crustal components, plutonic association, plate environment of the Hercynian fold belt of central Europe: Indications from a Nd and Sr isotopic study. Contributions to Mineralogy and Petrology 98, 129138.Google Scholar
Litvinovsky, B. A., Zanvilevich, A. N.& Kalmanovich, M. A. 1995. Recurrent mixing and mingling of coexisting syenite and basalt magmas in the Ust'-Khilok Pluton, Transbaikalia, and its petrologic significance. Petrology 3, 133–57.Google Scholar
Mass, R., Nicholls, I. A.& Legg, C. 1997. Igneous and metamorphic enclaves in the S-type Deddick granodiorite, Lachlan Fold Belt, SE Australia: Petrographic, geochemical and Nd-Sr isotopic evidence for crustal melting and magma mixing. Journal of Petrology 38, 815–41.Google Scholar
Masuda, A., Kawakami, O., Dohmoto, Y.& Takenaka, T. 1987. Lanthanide tetrad effects in nature: two mutually opposite types, W and M. Geochemical Journal 21, 119–24.Google Scholar
Masuda, A.& Akagi, T. 1990. Lanthanide tetrad effect observed in leucogranites from China. Geochemical Journal 23, 245–53.Google Scholar
McCulloch, M. T.& Chappell, B. W. 1982. Nd isotopic characteristics of S- and I-type granites. Earth and Planetary Science Letters, 58, 5164.Google Scholar
Miyazaki, A., Sato, K.& Saito, N. 1973. Lead isotopes of granitic rocks from the Hida metamorphic belt and some isotopic features of igneous rocks in Japan. Geochemical Journal 7, 231–44.Google Scholar
Mizutani, S.& Hattori, I. 1983. Hida and Mino: Tectonostratigraphic terranes in central Japan. In Hashimoto, M.& Uycda, S. (eds) Accretion Tectonics in the Circum-Pacific Regions, 169–78. Tokyo: Terra Science.Google Scholar
Mizutani, S.& Yao, A. 1991. Radiolarians and terranes: Mesozoic geology of Japan. Episodes 14, 213–16.Google Scholar
Moorbath, S. 1978. Age and isotopic evidence for the evolution of continental crust. Philosophical Transactions of the Royal Society of London 288, 401–13.Google Scholar
Moreno-Ventas, I., Rogers, G.& Castro, A. 1995. The role of hybridization in the genesis of Hercynian granitoids in the Gredos Massif, Spain: Inferences from Sr-Nd isotopes. Contributions to Mineralogy and Petrology 120, 137–49.Google Scholar
Pin, C.& Duthou, J. L. 1990. Sources of Hercynian granitoids from the French Massif Central: Inferences from Nd isotopies and consequences for crustal evolution. Chemical Geology 83, 281–96.Google Scholar
Poitrasson, F., Pin, C., Duthou, J. L.& Platevoet, B. 1994. Aluminous subsolvus anorogenic granite genesis in the light of Nd isotopic heterogeneity. Chemical Geology 112, 199219.Google Scholar
Poitrasson, F., Duthou, J. L.& Pin, C. 1995. The relationship between petrology and Nd isotopes as evidence for contrasting anorogenic granite genesis: example of the Corsican Province (SE France). Journal of Petrology 36, 1251–74.Google Scholar
Reymer, A.& Schubert, G. 1984. Phanerozoic addition rates to the continental crust and crustal growth. Tectonics 3, 6377.Google Scholar
Reymer, A.& Schubert, G. 1986. Rapid growth of some major segments of continental crust. Geology 14, 299302.Google Scholar
Samson, S. D., McClelland, W. C, Patchett, P. J., Gehrels, G. E.& Anderson, R. G. 1989. Evidence from neodymium isotopes for mantle contributions to Phanerozoic crustal genesis in the Canadian Cordillera. Nature 337, 705709.Google Scholar
Samson, S. D., Hibbard, J. P.& Wortman, G. L. 1995. Nd isotopic evidence for juvenile crust in the Carolina terrane, southern Appalachians. Contributions to Mineralogy and Petrology 121, 171–84.Google Scholar
Samson, S. D.& Patchett, P. J. 1991. The Canadian Cordillera as a modern analogue of Proterozoic crustal growth. Australian Journal of Earth Sciences 38, 595611.Google Scholar
Sato, K., Sasaki, A.& Konagai, K. 1978. Lead isotope ratios of galenas from the Hida area: a note. Mining Geology 28, 421–3.Google Scholar
Sengör, A. M. C., Natal'in, B. A.& Burtman, V. S. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364, 299307.Google Scholar
Sengör, A. M. C.& Natal'in, B. A. 1996. Turkin-type orogeny and its role in the making of the continental crust. Annual Review of Earth and Planetary Sciences 24, 263337.Google Scholar
Siebel, W., Hohndorf, A.& Wendt, I. 1995. Origin of late Variscan granitoids from NE Bavaria, Germany, exemplified by REE and Nd isotope systematics. Chemical Geology 125, 249–70.Google Scholar
Skjerlie, K. P. 1992. Petrogenesis and significance of late Caledonian granitoid magmatism in western Norway. Contributions to Mineralogy and Petrology 110, 473–87.Google Scholar
Stein, M.& Hofmann, A.W. 1994. Mantle plumes and episodic crustal growth. Nature 372, 63–8.Google Scholar
Suzuki, K.& Adachi, M. 1994. Middle Precambrian detrital monazite and zircon from the Hida gneiss on Oki-Dogo Island, Japan: their origin and implications for the correlation of basement gneiss of Southwest Japan and Korea. Tectonophysics 235, 277–92.Google Scholar
Tang, K. D. 1990. Tectonic development of Paleozoic foldbelts at the northern margin of the Sino-Korean craton. Tectonics 9, 249–60.Google Scholar
Taylor, S. R.& McLennan, S. M. 1985. The continental crust: its composition and evolution. Oxford: Blackwell.Google Scholar
Taylor, S. R.& McLennan, S. M. 1995. The geochemical evolution of the continental crust. Review of Geophysics 33, 241–65.Google Scholar
Tommasini, S., Poli, G.& Halliday, A. N. 1995. The role of sediment subduction and crustal growth in Hercynian plutonism: Isotopic and trace element evidence from the Sardinia-Corsica batholith. Journal of Petrology 36, 1305–32.Google Scholar
Turner, S. P., Foden, J. D.& Morrison, R. S. 1992. Derivation of A-type magmas by fractionation of basaltic magma: an example from the Padthaway Ridge, South Australia. Lithos 28, 151–79.Google Scholar
Turpin, L., Cuney, M., Friedrich, M., Bouchez, J-L.& Aubertin, M. 1990. Meta-igneous origin of Hercynian peraluminous granites in N. W. French Massif Central: Implications for crustal history reconstructions. Contributions to Mineralogy and Petrology 104, 163–72.Google Scholar
Vidal, P., Bernard-Griffiths, J., Cocherie, A., Le Fort, P., Peucat, J. J.& Sheppard, S. 1984. Geochemical comparison between Himalayan and Hercynian leucogranites. Physics of Earth and Planetary Interiors 35, 179–90.Google Scholar
Vladimirov, A. G., Ponomareva, A. P., Shokalskii, S. P., Khalilov, V. A., Kostitsyn, Y. A., Ponomarchuk, V. A., Rudnev, S. N., Vystavnoi, S. A., Kruk, N. N.& Tittov, A. V. 1997. Late Paleozoic-Early Mesozoic granitoid magmatism in Altai. Russian Geology and Geophysics 38, 755–70.Google Scholar
Wang, S. G., Han, B. F., Hong, D. W., Xu, B. L.& Sun, Y. L. 1994. Geochemistry and tectonic significance of alkali granites along Ulungur River, Xinjiang. Scientia Geologica Sinica 29, 373–83 [in Chinese with English abstract].Google Scholar
Whalen, J. B., Currie, K. L.& Chappell, B. W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology 95, 407–19.Google Scholar
Wnalen, J. B., Jenner, G. A., Longstaff, F. J., Robert, F.& Galiépy, C. 1996. Geochemical and isotopic (O, Nd, Pb and Sr) constraints on A-type granite petrogenesis based on the Topsails igneous suite, Newfoundland Appalachians. Journal of Petrology 37, 1463–89.Google Scholar
Wickham, S. M., Litvinovsky, B. A., Zanvilevich, A. N.& Bindeman, I. N. 1995. Geochemical evolution of Phanerozoic magmatism in Transbaikalia, East Asia: a key constraint on the origin of K-rich silicic magmas and the process of cratonization. Journal of Geophysical Research 100, 15641–54.Google Scholar
Wickham, S. M., Alberts, A. D., Zanvilevich, A. N., Litvinovsky, B. A., Bindeman, I. N.& Schuble, E. A. 1996. A stable isotope study of anorogenic magmatism in East Central Asia. Journal of Petrology 37, 1063–95.Google Scholar
Wilde, S. A., Dorsett-Bain, H. L.& Liu, J. L. 1997. The identification of a Late Pan-African granulite facies event in Northeastern China: SHRIMP U—Pb zircon dating of the MashanGroup at Liu Mao, Heilongjiang Province, China. Proceedings of the 30th IGC: Precambrian Geology and Metamorphic Petrology 17, 5974.Google Scholar
Wilde, S. A., Zhang, X. Z.& Wu, F. Y. 2000. Extension of a newlyidentified 500 Ma metamorphic terrain in NE China: further U—Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province, China. Tectonophysics (in press).Google Scholar
Williamson, B. J., Downes, H.& Thirlwall, M. F. 1992. The relationship between crustal magmatic underplating and granite genesis: An example from the Velay granite complex, Massif Central, France. Transactions of the Royal Society of Edinburgh: Earth Sciences 83, 235–45.Google Scholar
Windley, B. 1993. Proterozoic anorogenic magmatism and its orogenic connections. Journal of the Geological Society of London 150, 3950.Google Scholar
Windley, B. 1995. The Evolving Continent, 3rd edn. Chichester: John Wiley.Google Scholar
Wu, F. Y., Jahn, B. M., Wilde, S.& Sun, D. Y. 2000. Phanerozoic crustal growth: Sr—Nd isotopic evidence from the granites in northeastern China. Tectonophysics (in press).Google Scholar
Zanvilevich, A. N., Litvinovsky, B. A.& Wickham, S. M. 1995. Genesis of alkaline and peralkaline syenite-granite series: the Kharitonovo pluton (Transbaikalia, Russia), Journal of Geology 103, 127–45.Google Scholar
Zhang, L. G. 1995. Geology of the Eastern Asian Lithosphere. Beijing: Science Publication Co. [in Chinese with English abstract].Google Scholar
Zhao, Z. H. 1993. REE and O-Pb-Sr–Nd isotopic compositions and petrogenesis of the Altai granitoids. In New Development of Solid Earth Science in Northern Xinjiang, 239–66. Beijing: Science Publishing Co.Google Scholar
Zhou, T. X., Chen, J. F., Chen, D. G.& Li, X. M. 1995. Geochemical characteristics and genesis of granitoids from Alataw Mountain, Xinjiang, China. Geochimica 24, 3242 [in Chinese with English abstract].Google Scholar
Zonenshain, L. P., Kuzmin, M. I.& Natapov, L. M. 1990. Geology of the USSR: a plate tectonic synthesis, AGU Gcodynamics Series 21. Washington, DC: American Geophysical Union.Google Scholar