Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T10:26:47.364Z Has data issue: false hasContentIssue false

Experiments and modelling of premixed laminar stagnation flame hydrodynamics

Published online by Cambridge University Press:  23 June 2011

JEFFREY M. BERGTHORSON*
Affiliation:
Department of Mechanical Engineering, McGill University, Montreal, QC H3A 2K6, Canada
SEAN D. SALUSBURY
Affiliation:
Department of Mechanical Engineering, McGill University, Montreal, QC H3A 2K6, Canada
PAUL E. DIMOTAKIS
Affiliation:
Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA 91106, USA
*
Email address for correspondence: jeffrey.bergthorson@mcgill.ca

Abstract

The hydrodynamics of a reacting impinging laminar jet, or stagnation flame, is studied experimentally and modelled using large activation energy asymptotic models and numerical simulations. The jet-wall geometry yields a stable, steady flame and allows for precise measurement and specification of all boundary conditions on the flow. Laser diagnostic techniques are used to measure velocity and CH radical profiles. The axial velocity profile through a premixed stagnation flame is found to be independent of the nozzle-to-wall separation distance at a fixed nozzle pressure drop, in accord with results for non-reacting impinging laminar jet flows, and thus the strain rate in these flames is only a function of the pressure drop across the nozzle. The relative agreement between the numerical simulations and experiment using a particular combustion chemistry model is found to be insensitive to both the strain rate imposed on the flame and the relative amounts of oxygen and nitrogen in the premixed gas, when the velocity boundary conditions on the simulations are applied in a manner consistent with the formulation of the streamfunction hydrodynamic model. The analytical model predicts unburned, or reference, flame speeds that are slightly lower than the detailed numerical simulations in all cases and the observed dependence of this reference flame speed on strain rate is stronger than that predicted by the model. Experiment and simulation are in excellent agreement for near-stoichiometric methane–air flames, but deviations are observed for ethylene flames with several of the combustion models used. The discrepancies between simulation and experimental profiles are quantified in terms of differences between measured and predicted reference flame speeds, or position of the CH-profile maxima, which are shown to be directly correlated. The direct comparison of the measured and simulated reference flame speeds, ΔSu, can be used to infer the difference between the predicted flame speed of the combustion model employed and the true laminar flame speed of the mixture, ΔSOf, i.e. ΔSuSOf, consistent with recently proposed nonlinear extrapolation techniques.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benezech, L. J., Bergthorson, J. M. & Dimotakis, P. E. 2009 Premixed laminar C3H8- and C3H6–air stagnation flames: experiments and simulations with detailed kinetic models. Proc. Combust. Inst. 32, 13011309.CrossRefGoogle Scholar
Bergthorson, J. M. 2005 Experiments and modeling of impinging jets and premixed hydrocarbon stagnation flames. PhD thesis, California Institute of Technology, http://resolver.caltech.edu/CaltechETD:etd-05242005-165713.Google Scholar
Bergthorson, J. M. & Dimotakis, P. E. 2006 Particle velocimetry in high-gradient/high-curvature flows. Exp. Fluids 41, 255263.CrossRefGoogle Scholar
Bergthorson, J. M. & Dimotakis, P. E. 2007 Premixed laminar C1–C2 stagnation flames: experiments and simulations with detailed thermochemistry models. Proc. Combust. Inst. 31, 11391147.CrossRefGoogle Scholar
Bergthorson, J. M., Goodwin, D. G. & Dimotakis, P. E. 2005 a Particle streak velocimetry and CH laser-induced fluorescence diagnostics in strained, premixed, methane–air flames. Proc. Combust. Inst. 30, 16371644.CrossRefGoogle Scholar
Bergthorson, J. M., Sone, K., Mattner, T. W., Dimotakis, P. E., Goodwin, D. G. & Meiron, D. I. 2005 b Impinging laminar jets at moderate Reynolds numbers and separation distances. Phys. Rev. E 72 (6), 066307, 112.Google ScholarPubMed
Chong, C. T. & Hochgreb, S. 2011 Measurements of laminar flame speeds of liquid fuels: Jet-A1, diesel, palm methyl esters and blends using particle imaging velocimetry (PIV). Proc. Combust. Inst. 33, 979986.CrossRefGoogle Scholar
Connelly, B. C., Bennett, B. A. V., Smooke, M. D. & Long, M. B. 2009 A paradigm shift in the interaction of experiments and computations in combustion research. Proc. Combust. Inst. 32, 879886.CrossRefGoogle Scholar
Davis, S. G., Law, C. K. & Wang, H. 1999 Propene pyrolysis and oxidation kinetics in a flow reactor and laminar flames. Combust. Flame 119, 375399.CrossRefGoogle Scholar
Davis, S. G., Quinard, J. & Searby, G. 2001 A numerical investigation of stretch effects in counterflow, premixed laminar flames. Combust. Theor. Model. 5, 353362.CrossRefGoogle Scholar
Durbin, P. A. 1982 The premixed flame in uniform straining flow. J. Fluid Mech. 121, 141161.CrossRefGoogle Scholar
Egolfopoulos, F. N., Zhang, H. & Zhang, Z. 1997 Wall effects on the propagation and extinction of steady, strained, laminar premixed flames. Combust. Flame 109, 237252.CrossRefGoogle Scholar
Eteng, E., Ludford, G. S. S. & Matalon, M. 1986 Displacement effect of a flame in stagnation-point flow. Phys. Fluids 29, 21722180.CrossRefGoogle Scholar
Frouzakis, C. E., Lee, J., Tomboulides, A. G. & Boulouchos, K. 1998 Two-dimensional direct numerical simulation of opposed-jet hydrogen–air diffusion flame. Proc. Combust. Inst. 27, 571577.CrossRefGoogle Scholar
Goodwin, D. G. 2003 An open-source, extensible software suite for CVD process simulation. In Proc. CVD XVI and EuroCVD 14, Electrochemical Society, pp. 155–162.Google Scholar
Grcar, J. F., Kee, R. J., Smooke, M. D. & Miller, J. A. 1986 A hybrid Newton/time-integration procedure for the solution of steady, laminar, one-dimensional, premixed flames. Proc. Combust. Inst. 21, 17731782.CrossRefGoogle Scholar
Hirasawa, T., Sung, C. J., Joshi, A., Yang, Z., Wang, H. & Law, C. K. 2002 Determination of laminar flame speeds using digital particle image velocimetry: binary fuel blends of ethylene, n-butane, and toluene. Proc. Combust. Inst. 29, 14271434.CrossRefGoogle Scholar
Ishizuka, S. & Law, C. K. 1982 An experimental study on extinction and stability of stretched premixed flames. Proc. Combust. Inst. 19, 327335.CrossRefGoogle Scholar
Ishizuka, S., Miyasaka, K. & Law, C. K. 1982 Effects of heat loss, preferential diffusion, and flame stretch on flame-front instability and extinction of propane/air mixtures. Combust. Flame 45, 293308.CrossRefGoogle Scholar
Ji, C., Dames, E., Wang, Y. L., Wang, H. & Egolfopoulos, F. N. 2010 Propagation and extinction of premixed C5–C12 n-alkane flames. Combust. Flame 157, 277287.CrossRefGoogle Scholar
Kee, R. J., Coltrin, M. E. & Glarborg, P. 2003 Chemically Reacting Flow – Theory and Practice. John Wiley & Sons.CrossRefGoogle Scholar
Kee, R. J., Miller, J. A., Evans, G. H. & Dixon-Lewis, G. 1988 A computational model of the structure and extinction of strained, opposed flow, premixed methane–air flames. Proc. Combust. Inst. 22, 14791494.CrossRefGoogle Scholar
Kim, Y. D. & Matalon, M. 1988 Propagation and extinction of a flame in a stagnation-point flow. Combust. Flame 73, 303313.CrossRefGoogle Scholar
Law, C. K. 1988 Dynamics of stretched flames. Proc. Combust. Inst. 22, 13811402.CrossRefGoogle Scholar
Law, C. K. & Sung, C. J. 2000 Structure, aerodynamics, and geometry of premixed flamelets. Prog. Energy Combust. Sci. 26, 459505.CrossRefGoogle Scholar
Law, C. K., Sung, C. J., Yu, G. & Axelbaum, R. L. 1994 On the structural sensitivity of purely strained planar premixed flames to strain rate variations. Combust. Flame 98, 139154.CrossRefGoogle Scholar
Libby, P. A. & Smooke, M. D. 1997 The computation of flames in stagnation flows. Combust. Sci. Technol. 127, 197211.CrossRefGoogle Scholar
Libby, P. A. & Williams, F. A. 1983 Strained premixed laminar flames under nonadiabatic conditions. Combust. Sci. Technol. 31, 142.CrossRefGoogle Scholar
Matalon, M., Cui, C. & Bechtold, J. K. 2003 Hydrodynamic theory of premixed flames: effects of stoichiometry, variable transport coefficients and arbitrary reaction orders. J. Fluid Mech. 487, 179210.CrossRefGoogle Scholar
Matalon, M. & Matkowsky, B. J. 1982 Flames as gasdynamic discontinuities. J. Fluid Mech. 124, 239259.CrossRefGoogle Scholar
Mendes-Lopes, J. M. C. & Daneshyar, H. 1985 Influence of strain fields on flame propagation. Combust. Flame 60, 2948.CrossRefGoogle Scholar
Rolon, J. C., Veynante, D., Martin, J. P. & Durst, F. 1991 Counter jet stagnation flows. Exp. Fluids 11, 313324.CrossRefGoogle Scholar
Salusbury, S. D. 2010 Premixed methane stagnation flames with oxygen enrichment. Master's thesis, McGill University, PID 87008, http://digitool.Library.McGill.CA:80/R/-?func=dbin-jump-full&object_id=870%08&current_base=GEN01.Google Scholar
Schlichting, H. 1960 Boundary Layer Theory. McGraw-Hill, Inc.Google Scholar
Seshadri, K. & Williams, F. A. 1978 Laminar flow between parallel plates with injection of reactant at high Reynolds number. Intl J. Heat and Mass Transfer 21, 251253.CrossRefGoogle Scholar
Sivashinsky, G. I. 1976 On a distorted flame front as a hydrodynamic discontinuity. Acta Astronaut. 3, 889918.CrossRefGoogle Scholar
Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, W. C. Jr., Lissianski, V. V. & Qin, Z. 1999 GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech/.Google Scholar
Sone, K. 2007 Modeling and simulation of axisymmetric stagnation flames. PhD thesis, California Institute of Technology, http://resolver.caltech.edu/CaltechETD:etd-04252007-170838.Google Scholar
Sung, C. J., Kistler, J. S., Nishioka, M. & Law, C. K. 1996 a Further studies on effects of thermophoresis on seeding particles in LDV measurements of strained flames. Combust. Flame 105, 189201.CrossRefGoogle Scholar
Sung, C. J., Law, C. K. & Axelbaum, R. L. 1994 Thermophoretic effects on seeding particles in LDV measurements of flames. Combust. Sci. Technol. 99, 119132.CrossRefGoogle Scholar
Sung, C. J., Liu, J. B. & Law, C. K. 1996 b On the scalar structure of nonequidiffusive premixed flames in counterflow. Combust. Flame 106, 168183.CrossRefGoogle Scholar
Tien, J. H. & Matalon, M. 1991 On the burning velocity of stretched flames. Combust. Flame 84, 238248.CrossRefGoogle Scholar
Veloo, P. S., Wang, Y. L., Egolfopoulos, F. N. & Westbrook, C. K. 2010 A comparative experimental and computational study of methanol, ethanol, and n-butanol flames. Combust. Flame 157, 19892004.CrossRefGoogle Scholar
Wang, Y. L., Holley, A. T., Ji, C., Egolfopoulos, F. N., Tsotsis, T. T. & Curran, H. J. 2009 Propagation and extinction of premixed dimethyl-ether/air flames. Proc. Combust. Inst. 32, 10351042.CrossRefGoogle Scholar
Westbrook, C. K. & Dryer, F. L. 1981 Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust. Sci. Technol. 27, 3143.CrossRefGoogle Scholar
Williams, F. A. 2000 Progress in knowledge of flamelet structure and extinction. Prog. Energy Combust. Sci. 26, 657682.CrossRefGoogle Scholar