Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-18T10:03:48.790Z Has data issue: false hasContentIssue false

Dynamics of fossil magnetic fields in massive star interiors

Published online by Cambridge University Press:  12 July 2011

Stéphane Mathis*
Affiliation:
Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/SAp Centre de Saclay, F-91191 Gif-sur-Yvette, France; email: stephane.mathis@cea.fr LESIA, Observatoire de Paris, CNRS, Université Paris Diderot, UPMC, 5 place Jules Janssen, 92190 Meudon, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this talk, I review the different MHD processes, which take place in massive star interiors. First, I describe MHD instabilities, which act on magnetic fields in stellar radiation zones, and the dynamo action in massive stars that give strong indications in favor of a fossil origin of the fields observed at the surface of these stars. Then, I discuss the study of MHD turbulent relaxation processes, which are now examined in stellar interiors, to describe initial conditions for fossil magnetic fields. Finally, I focus on the state of the art of the modeling of the interaction between differential rotation, fossil magnetic field, meridional circulation, and turbulence.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Alecian, E., Wade, G. A., Catala, C., Bagnulo, S. et al. 2008, A&A, 481, L99Google Scholar
Aurière, M., Wade, G. A., Silvester, J., Lignières, F. et al. 2007, A&A, 475, 1053Google Scholar
Biskamp, D. 1997, Nonlinear Magnetohydrodynamics, (Cambridge, UK: Cambridge University Press)Google Scholar
Braithwaite, J. 2006, A&A, 449, 451Google Scholar
Braithwaite, J. 2008, MNRAS, 386, 1947CrossRefGoogle Scholar
Braithwaite, J. 2009, MNRAS, 397, 763Google Scholar
Braithwaite, J. & Spruit, H. C. 2004, Nature, 431, 819CrossRefGoogle Scholar
Braithwaite, J. & Nordlund, Å. 2006, A&A, 450, 1077Google Scholar
Brun, A. S., Browning, M. K., & Toomre, J. 2005, ApJ, 629, 461CrossRefGoogle Scholar
Busse, F. H. 1981, Geophysical and Astrophysical Fluid Dynamics, 17, 215CrossRefGoogle Scholar
Commerçon, B., Hennebelle, P., Audit, E., Chabrier, G. et al. 2010, A&A, 510, L3Google Scholar
Decressin, T., Mathis, S., Palacios, A., Siess, L. et al. 2009, A&A, 495, 271Google Scholar
Duez, V. & Mathis, S. 2010, A&A, 517, A58Google Scholar
Duez, V., Braithwaite, J., & Mathis, S. 2010a, ApJ (Letters) 724, L34Google Scholar
Duez, V., Mathis, S., & Turck-Chièze, S. 2010b, MNRAS, 402, 271CrossRefGoogle Scholar
Grunhut, J. H., Wade, G. A., Marcolino, W. L. F., Petit, V. et al. 2009, MNRAS, 400, L94Google Scholar
Maeder, A. & Meynet, G. 2000, ARAA, 38, 143CrossRefGoogle Scholar
Mathis, S. & Zahn, J.-P. 2005, A&A, 440, 653Google Scholar
Mestel, L., Tayler, R. J., & Moss, D. L. 1988, MNRAS, 231, 873Google Scholar
Montgomery, D. & Phillips, L. 1988, Phys. Rev. A, 38, 2953CrossRefGoogle Scholar
Moss, D. 1992, MNRAS, 257, 593Google Scholar
Prendergast, K. H. 1956, ApJ, 123, 498CrossRefGoogle Scholar
Reisenegger, A. 2009, A&A, 499, 557Google Scholar
Rieutord, M. 2006, A&A, 451, 1025Google Scholar
Spruit, H. C. 1999, A&A, 349, 189Google Scholar
Spruit, H. C. 2002, A&A, 381, 923Google Scholar
Tayler, R. J. 1973, MNRAS, 161, 365CrossRefGoogle Scholar
Taylor, J. B. 1974, Phys. Rev. Lett., 33, 1139Google Scholar
Woltjer, L. 1959, ApJ, 130, 405Google Scholar
Wright, G. A. E. 1973, MNRAS, 162, 339CrossRefGoogle Scholar
Zahn, J.-P. 1992, A&A, 265, 115Google Scholar
Zahn, J.-P., Brun, A. S., & Mathis, S. 2007, A&A, 474, 145Google Scholar