Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T12:45:43.488Z Has data issue: false hasContentIssue false

Marine ice sheet dynamics. Part 2. A Stokes flow contact problem

Published online by Cambridge University Press:  17 May 2011

CHRISTIAN SCHOOF*
Affiliation:
Department of Earth and Ocean Sciences, University of British Columbia, 6339 Stores Road, Vancouver V6T 1Z4, Canada
*
Email address for correspondence: cschoof@eos.ubc.ca

Abstract

We develop an asymptotic theory for marine ice sheets from a first-principles Stokes flow contact problem, in which different boundary conditions apply to areas where ice is in contact with bedrock and inviscid sea water, along with suitable inequalities on normal stress and boundary location constraining contact and non-contact zones. Under suitable assumptions about basal slip in the contact areas, the boundary-layer structure for this problem replicates the boundary layers previously identified for marine ice sheets from depth-integrated models and confirms the results of these previous models: the interior of the grounded ice sheet can be modelled as a standard free-surface lubrication flow, while coupling with the membrane-like floating ice shelf leads to two boundary conditions on this lubrication flow model at the contact line. These boundary conditions determine ice thickness and ice flux at the contact line and allow the lubrication flow model with a contact line to be solved as a moving boundary problem. In addition, we find that the continuous transition of vertical velocity from grounded to floating ice requires the presence of two previously unidentified boundary layers. One of these takes the form of a viscous beam, in which a wave-like surface feature leads to a continuous transition in surface slope from grounded to floating ice, while the other provides boundary conditions on this viscous beam at the contact line.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balmforth, N. J. & Craster, R. V. 1999 A consistent thin-layer theory for Bingham plastics. J. Non-Newtonian Fluid Mech. 84 (1), 6581.CrossRefGoogle Scholar
Baral, D. R., Hutter, K. & Greve, R. 2001 Asymptotic theories of large-scale motion, temperature distribution in land-based polythermal ice sheets: A critical review and new developments. Appl. Mech. Rev. 54 (3), 215256.CrossRefGoogle Scholar
Carr, J. 1981 Applications of Centre Manifold Theory. Springer.CrossRefGoogle Scholar
Chugunov, V. A. & Wilchinsky, A. V. 1996 Modelling of marine glacier and ice-sheet-ice-shelf transition zone based on asymptotic analysis. Ann. Glaciol. 23, 5967.CrossRefGoogle Scholar
Durand, G., Gagliardini, O., de Fleurian, B., Zwinger, T. & LeMeur, E. 2009 Marine ice sheet dynamics: Hysteresis and neutral equilibrium. J. Geophys. Res. 114, F03009, doi:10.1029/2008JF001170.Google Scholar
Erneux, T. & Davis, S. H. 1993 Nonlinear rupture of free films. Phys. Fluids A5 (5), 11171122.CrossRefGoogle Scholar
Evatt, G. & Fowler, A. C. 2007 Cauldron subsidence and subglacial floods. Ann. Glaciol. 45, 163168.CrossRefGoogle Scholar
Gagliardini, O., Cohen, D., Raback, P. & Zwinger, T. 2007 Finite-element modeling of subglacial cavities and related friction law. J. Geophys. Res. 112 (F2), F02027, doi:10.1029/2006JF000576.Google Scholar
Goldberg, D., Holland, D. M. & Schoof, C. 2009 Grounding line movement and ice shelf buttressing in marine ice sheets. J. Geophys. Res. 114, F04026, doi:10.1029/2008JF001227.Google Scholar
Holland, D. M. & Jenkins, A. 2001 Adaptation of an isopycnic coordinate ocean model for the study of circulation beneath ice shelves. Mon. Weath. Rev. 129, 19051927.2.0.CO;2>CrossRefGoogle Scholar
Katz, R. F. & Worster, M. G. 2010 Stability of ice-sheet grounding lines. Proc. R. Soc. Lond. A 466, 15971620.Google Scholar
Kikuchi, N. & Oden, J. T. 1988 Contact Problems in Elasticity : A Study of Variational Inequalities and Finite Element Methods. SIAM.CrossRefGoogle Scholar
Lister, J. R. & Kerr, R. C. 1989 The propagation of two-dimensional and axisymmetric viscous gravity currents at a fluid interface. J. Fluid. Mech. 203, 215249.CrossRefGoogle Scholar
Lliboutry, L. 1968 General theory of subglacial cavitation and sliding of temperate glaciers. J. Glaciol. 7 (49), 2158.CrossRefGoogle Scholar
MacAyeal, D. R. 1989 Large-scale flow over a viscous basal sediment: theory and application to Ice Stream E, Antarctica. J. Geophys. Res. 94 (B4), 40174087.Google Scholar
MacAyeal, D. R. & Barcilon, V. 1988 Ice-shelf response to ice-stream discharge fluctuations. I. Unconfined ice tongues. J. Glaciol. 34 (116), 121127.CrossRefGoogle Scholar
Muszynski, I. & Birchfield, G. E. 1987 A coupled marine ice-stream–ice-shelf model. J. Glaciol. 33 (113), 315.CrossRefGoogle Scholar
Nowicki, S. M. J. & Wingham, D. J. 2008 Conditions for a steady ice sheet–ice shelf junction. Earth Planet. Sci. Lett. 265, 246255.CrossRefGoogle Scholar
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69 (3), 931977.CrossRefGoogle Scholar
Pattyn, F., Huyghe, A., De Brabander, S. & De Smedt, B. 2006 Role of transition zones in marine ice sheet dynamics. J. Geophys. Res. 111, F02004, doi:10.1029/2005JF000394.Google Scholar
Schoof, C. 2005 The effect of cavitation on glacier sliding. Proc. R. Soc. Lond. A 461, 609627.Google Scholar
Schoof, C. 2006 A variational approach to ice-stream flow. J. Fluid Mech. 556, 227251.CrossRefGoogle Scholar
Schoof, C. 2007 a Ice sheet grounding line dynamics: steady states, stability and hysteresis. J. Geophys. Res. 112, F03S28, doi:10.1029/2006JF000664.Google Scholar
Schoof, C. 2007 b Marine ice sheet dynamics. Part 1. The case of rapid sliding. J. Fluid Mech. 573, 2755.CrossRefGoogle Scholar
Schoof, C. & Hindmarsh, R. C. A. 2010 Thin-film flows with wall slip: an asymptotic analysis of higher order glacier flow models. Q. J. Mech. Appl. Math. 67 (1), 73114.CrossRefGoogle Scholar
Sijbrand, J. 1985 Properties of center manifolds. Trans. Am. Math. Soc. 289 (2), 431469.CrossRefGoogle Scholar
Solomon, S., Qin, D., Manning, M., Marquis, M., Averty, K., Tignor, M., Miller, H. L. & Chen, Z., ed. 2007 Climate Change 2007: The Scientific Basis. Cambridge University Press.Google Scholar
van der Veen, C. J. 1983 A note on the equilibrium profile of a free floating ice shelf. IMAU Rep. V83-15. State University Utrecht, Utrecht.Google Scholar
Vieli, A. & Payne, A. J. 2005 Assessing the ability of numerical ice sheet models to simulate grounding line migration. J. Geophys. Res. 110, F01003, doi:10.1029/2004JF000202.Google Scholar
Wilchinsky, A. V. & Chugunov, V. A. 2000 Ice stream-ice shelf transition: theoretical analysis of two-dimensional flow. Ann. Glaciol. 30, 153162.CrossRefGoogle Scholar
Wilchinsky, A. V. & Chugunov, V. A. 2001 Modelling ice flow in various glacier zones. J. Appl. Math. Mech. 65 (3), 479493.CrossRefGoogle Scholar