Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-28T23:52:04.028Z Has data issue: false hasContentIssue false

A structural study of Cu–In–Se compounds by x-ray absorption fine structure

Published online by Cambridge University Press:  28 April 2011

Seiji Yamazoe*
Affiliation:
Department of Materials Chemistry, Ryukoku University, Seta, Otsu 520-2194, Japan
Hou Kou
Affiliation:
Department of Materials Chemistry, Ryukoku University, Seta, Otsu 520-2194, Japan
Takahiro Wada
Affiliation:
Department of Materials Chemistry, Ryukoku University, Seta, Otsu 520-2194, Japan
*
a)Address all correspondence to this author. e-mail: yamazoe@rins.ryukoku.ac.jp
Get access

Abstract

The local structures about Cu, In, and Se atoms in a series of Cu2Se–In2Se3 pseudobinary compounds have been investigated by x-ray absorption fine structure (XAFS). In K-edge XAFS and L3-edge x-ray absorption near-edge structure (XANES) suggest that CuInSe2, Cu0.9InSe1.95, Cu0.82InSe1.91, and Cu2In3Se5.5 have a nominally four-coordinated InSe4 structure, whereas CuIn3Se5 and CuIn5Se8 possess two different InSe4 structures. Cu K-edge XAFS also showed that CuIn3Se5 and CuIn5Se8 possess two different CuSe4 structures, whereas others have a CuSe4 structure. Se K-edge XANES and curve fitting analysis reveal that the Cu vacancy (VCu) gradually forms with decreasing Cu/In ratio. Moreover, the substitution of In for VCu (InCu) is observed in CuIn3Se5 and CuIn5Se8. These results were compared to the previously proposed Cu–In–Se models. We conclude that Cu0.9InSe1.95 and Cu0.82InSe1.91 have a chalcopyrite structure with VCu and that the structure of CuIn3Se5 and CuIn5Se8 is a stannite-like structure with VCu and InCu defects.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shay, J.L., Tell, B., Kasper, H.M., and Schiavone, L.M.: Electronic structure of AgInSe2 and CuInSe2. Phys. Rev. B 7, 4485 (1973).CrossRefGoogle Scholar
2.Herberholz, R., Nadenau, V., Rühle, U., Köble, C., Schock, H.W., and Dimmler, B.: Prospects of wide-gap chalcopyrites for thin film photovoltaic modules. Sol. Energy Mater. Sol. Cells 49, 227 (1997).CrossRefGoogle Scholar
3.Höring, W., Neumann, H., Sobotta, H., Schumann, B., and Kühn, G.: The optical properties of CuInSe2 thin films. Thin Solid Films 48, 67 (1978).CrossRefGoogle Scholar
4.Weakleim, H.A. and Redfield, D.: Temperature dependence of the optical properties of silicon. J. Appl. Phys. 50, 1491 (1979).CrossRefGoogle Scholar
5.Jaffe, J.E. and Zunger, A.: Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors. Phys. Rev. B 29, 1882 (1984).CrossRefGoogle Scholar
6.Repins, I., Contreras, M.A., Egaas, B., DeHart, C., Scharf, J., Perkins, C.L., To, B., and Noufi, R.: 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog. Photovolt. Res. Appl. 16, 235 (2008).CrossRefGoogle Scholar
7.Green, M.A., Emery, K., Hshikawa, Y., and Warta, W.: Solar cell efficiency tables (version 53). Prog. Photovoltaics Res. Appl. 18, 144 (2010).CrossRefGoogle Scholar
8.Schmid, D., Ruckh, M., Grunwald, F., and Schock, H.W.: Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2. J. Appl. Phys. 73, 2902 (1993).CrossRefGoogle Scholar
9.Palatnik, L.S. and Rogacheva, E.J.: Phase diagrams and structure of some semiconductor A2ICVI-B2IIICVI alloys. Sov. Phys. Dokl. 12, 503 (1967).Google Scholar
10.Hönle, W., Kühn, G., and Boehnke, U.C.: Crystal structures of two quenched Cu-In-Se phases. Cryst. Res. Technol. 23, 1347 (1988).CrossRefGoogle Scholar
11.Tseng, B.H. and Wert, C.A.: Defect-ordered phases in a multiphase Cu-In-Se material. J. Appl. Phys. 65, 2254 (1989).CrossRefGoogle Scholar
12.Knight, K.S.: The crystal structures of CuInSe2 and CuInTe2. Mater. Res. Bull. 27, 161 (1992).CrossRefGoogle Scholar
13.Xiao, H.Z., Yang, L.C., and Rockett, A.: Structural, optical, and electrical properties of epitaxial chalcopyrite CuIn3Se5 films. J. Appl. Phys. 76, 1503 (1994).CrossRefGoogle Scholar
14.Nomura, S. and Endo, S.: Preparation and structural analysis of ordered vacancy compounds in the Cu-In-Se system. MRS Jpn. 20, 755 (1996).Google Scholar
15.Hanada, T., Yamana, A., Nakamura, Y., Nittono, O., and Wada, T.: Crystal structure of CuIn3Se5 semiconductor studied using electron and X-ray diffractions. Jpn. J. Appl. Phys. 36, L1494 (1997).CrossRefGoogle Scholar
16.Merino, J.M., Mahanty, S., Leon, M., Diaz, R., Rueda, F., and Vidales, J.L.M.d.: Structural characterization of CuIn2Se3.5, CuIn3Se5 and CuIn5Se8. Thin Solid Films 361/362, 70 (2000).CrossRefGoogle Scholar
17.Chang, C.H., Wei, S.H., Johnson, J.W., Zhang, S.B., Leyarovska, N., Bunker, G., and Anderson, T.J.: Local structure of CuIn3Se5: X-ray absorption fine structure study and first-principles calculations. Phys. Rev. B 68, 054108 (2003).CrossRefGoogle Scholar
18.Paszkowicz, W., Lewandowska, R., and Bacewicz, R.: Rietveld refinement for CuInSe2 and CuIn3Se5. J. Alloy. Comp. 362, 241 (2004).CrossRefGoogle Scholar
19.Boehnke, U.C. and Kühn, G.: Phase relations in the ternary system Cu-In-Se. J. Mater. Sci. 22, 1635 (1987).CrossRefGoogle Scholar
20.Tell, B., Shay, J.L., and Kasper, H.M.: Room-temperature electrical properties of Te I-III-VI2 semiconductors. J. Appl. Phys. 43, 2469 (1972).CrossRefGoogle Scholar
21.Parkes, J., Thomlinson, R.D., and Hampshiere, M.J.: Electrical properties of CuInSe2 single crystals. Solid State Electron. 16, 773 (1973).CrossRefGoogle Scholar
22.Migliorato, P., Shay, J.L., Kasper, H.M., and Wagner, S.: Analysis of the electrical and luminescent properties of CuInSe2. J. Appl. Phys. 46, 1777 (1975).CrossRefGoogle Scholar
23.Noufi, R., Axton, R., Herrington, C., and Deb, S.K.: Electronic properties versus composition of thin films of CuInSe2. Appl. Phys. Lett. 45, 668 (1984).CrossRefGoogle Scholar
24.Zhang, S.B., Wei, S.H., and Zunger, A.: Stabilization of ternary compounds via ordered arrays of defect pairs. Phys. Rev. Lett. 78, 4059 (1997).CrossRefGoogle Scholar
25.Zhang, S.B., Wei, S.H., and Zunger, A.: Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys. Rev. B 57, 9642 (1998).CrossRefGoogle Scholar
26.Maeda, T. and Wada, T.: Characteristics of chemical bond and vacancy formation in chalcopyrite-type CuInSe2 and related compounds. Phys. Status Solidi C 6, 1312 (2009).CrossRefGoogle Scholar
27.Kohara, N., Nishiawaki, S., Negami, T., and Wada, T.: Physical vapor deposition of hexagonal and tetragonal CuIn5Se8 thin films. Jpn. J. Appl. Phys. 39, 6316 (2000).CrossRefGoogle Scholar
28.Bacewicz, R., Wolska, A., Lawniczak-Jablonska, K., and Sainctavit, P.: X-ray absorption near-edge structure of CuInSe2 crystals. J. Phys. Condens. Matter 12, 7371 (2000).CrossRefGoogle Scholar
29.Wolska, A., Bacewicz, R., Fillipowicz, J., and Attenkofer, K.: X-ray absorption near-edge structure of selenium in the Cu-In-Se system. J. Phys. Condens. Matter 13, 4457 (2001).CrossRefGoogle Scholar
30.Merino, J.M., Díaz-Moreno, S., Subías, G., and Leön, M.: A comparative study of Cu-Se and In-Se bond length distributions in CuInSe2 with related In-rich compounds. Thin Solid Films 480/481, 295 (2005).CrossRefGoogle Scholar
31.Lewandowska, R., Bacewicz, R., and Fillipowicz, J.: EXAFS study of In-rich phases in Cu-In-Se system. Cryst. Res. Technol. 37, 235 (2002).3.0.CO;2-H>CrossRefGoogle Scholar
32.Wada, T., Kinoshita, H., and Kawata, S.: Preparation of chalcopyrite-type CuInSe2 by non-heating process. Thin Solid Films 431/432, 11 (2003).CrossRefGoogle Scholar
33.Ankudinov, A.L., Ravel, B., Rehr, J.J., and Conradson, S.D.: Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys. Rev. B 58, 7565 (1998).CrossRefGoogle Scholar
34.Kosugi, N., Tokura, Y., Takagi, H., and Uchida, S.: Cu K-edge x-ray absorption near-edge structure and electronic structure of Nd2-xCe xCuO4-y and La2-xSr xCuO4. Phys. Rev. B 41, 131 (1990).CrossRefGoogle Scholar
35.Yamamoto, T., Tanaka, T., Suzuki, S., Kuma, R., Teramura, K., Kou, Y., Funabiki, T., and Yoshida, S.: NO reduction with CO in the presence of O2 over Cu/Al2O3 (3)—Structural analysis of active species by means of XAFS and UV/VIS/NIR spectroscopy. Top. Catal. 18, 113 (2002).CrossRefGoogle Scholar
36.Sano, M., Komorita, S., and Yamatera, H.: XANES spectra of copper(II) complexes: Correlation of the intensity of the 1s→3d transition and the shape of the complexes. Inorg. Chem. 31, 459 (1992).CrossRefGoogle Scholar
37.Spiess, H.W., Haeberln, U., Brandt, G., Räuber, A., and Schneider, J.: Nuclear magnetic resonance in IB-III-VI2 semiconductors. Phys. Status Solidi B 62, 183 (1974).CrossRefGoogle Scholar
38.Zahn, G. and Paufler, P.: Identification of predominant point defects in nonstoichiometric CuInSe2 by x-ray powder diffraction. Cryst. Res. Technol. 23, 499 (1988).CrossRefGoogle Scholar
39.Merino, J.M., Martin de Vidales, J.L., Mahanty, S., Diaz, R., Rueda, F., and León, M.: Composition effects on the crystal structure of CuInSe2. J. Appl. Phys. 80, 5610 (1996).CrossRefGoogle Scholar
40.Frolow, F., Chernyak, L., Cahen, D., Hallak, H., Gabboun, J., Kvick, A., and Graafama, H.: Ternary and multinary compounds. Inst. Phys. Conf. Ser. 152, 67 (1998).Google Scholar
41.T-Thienprasert, J., Nukeaw, J., Sungthong, A., Porntheeraphat, S., Singkarat, S., Onkaw, D., Rujirawat, S., and Limpijumnong, S.: Local structure of indium oxynitride from x-ray absorption spectroscopy. Appl. Phys. Lett. 93, 051903 (2008).CrossRefGoogle Scholar
42.Gastaldi, L., Simeone, M.G., and Viticoli, S.: Structure refinement of ZnIn2Se4. J. Solid State Chem. 66, 251 (1987).CrossRefGoogle Scholar
43.March, R.E. and Robinson, W.R.: On the structure of ZnIn2Se4. J. Solid State Chem. 73, 591 (1988).Google Scholar