Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T07:34:02.168Z Has data issue: false hasContentIssue false

Breeding and fecundity of the sub-Antarctic crab Halicarcinus planatus (Crustacea: Hymenosomatidae) in the Deseado River estuary, Argentina

Published online by Cambridge University Press:  24 November 2010

Lucrecia Ferrari
Affiliation:
Programa de Ecofisiología Aplicada, Departamento de Ciencias Básicas, Instituto de Ecología y Desarrollo Sustentable, Universidad Nacional de Lujan (UNLu), Casilla de Correo 221, (6700), Lujan, Argentina. Comisión de Investigaciones Científicas, Provincia de Buenos Aires (1900), La Plata, Argentina
Damián G. Gil
Affiliation:
Instituto de Desarrollo Costero, Universidad Nacional de la Patagonia San Juan Bosco
Julio H. Vinuesa*
Affiliation:
Instituto de Desarrollo Costero, Universidad Nacional de la Patagonia San Juan Bosco Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta 1, Km 4 (9000) Comodoro Rivadavia, Chubut, Argentina
*
Correspondence should be addressed to: J.H. Vinuesa, Instituto de Desarrollo Costero, Universidad Nacional de la Patagonia San Juan Bosco, Ruta 1, Km 4 (9000) Comodoro Rivadavia, Chubut, Argentina email: julio.vinuesa@gmail.com

Abstract

Halicarcinus planatus is the only species of the genus occurring at the southern tip of South America, in sub-Antarctic, cold-temperate waters. Previously it has been shown that the population from the estuary of the Deseado River presents a spatial segregation by sex, a complete overlapping of sizes among adolescents and adult females. Females go through two reproductive seasons, separated by a resting period during late summer and early autumn, and 7 to 8 spawns are produced following a single mating. The aims of the present work were to evaluate the duration of the embryonic development until hatching during successive spawning, to determine the fecundity and to discuss the adaptive reproductive strategies of this population. Breeding occurs from nearly 2°C to above 16°C. The incubation period lasts nearly 100 days in winter and between 30 and 40 days in summer. The fecundity ranged from 210 to 2150 eggs, it differs between successive spawning and a positive relationship was found between fecundity and carapace width. This population has the highest fecundity compared to other populations, but also compared to other species of the genus. The high number of successive spawns is directly linked to the increase of seawater temperature by the end of spring and during summer. This way, this species would be very well adapted to live in the more temperate waters of Patagonian coasts.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akselman, R. (1996) Estudios ecológicos en el golfo San Jorge y adyacencias (Atlántico Sudoccidental). Distribución, abundancia y variación estacional del fitoplancton en relación a factores físico-químicos y la dinámica hidrológica. PhD thesis. Universidad de Buenos Aires, Buenos Aires, Argentina.Google Scholar
Boschi, E.E., Fischbach, K. and Iorio, M.I. (1992) Catálogo ilustrado de los crustáceos estomatópodos y decápodos marinos de Argentina. Frente Marítimo 10, 794.Google Scholar
Boschi, E.E., Scelzo, M.A. and Goldstein, B. (1969) Desarrollo larval del cangrejo Halicarcinus planatus (Fabricius) (Crustacea, Decapoda, Hymenosomatidae) en el laboratorio, con observaciones sobre la distribución de la especie. Bulletin of Marine Science 19, 225242.Google Scholar
Broekhuysen, G.J. (1955) The breeding and growth of Hymenosoma orbiculare Desm. (Crustacea, Brachyura). Annals of the South African Museum 41, 313343.Google Scholar
Day, R.W. and Quinn, G.P. (1989) Comparisons of treatments after an analysis of variance in ecology. Ecological Monographs 59, 433463.CrossRefGoogle Scholar
Dellatorre, F.J. and Barón, P.J. (2008) Multiple spawning and length of embryonic development of Munida gregaria in northern Patagonia (Argentina). Journal of the Marine Biological Association of the United Kingdom 88, 975981.CrossRefGoogle Scholar
Diez, M.J. and Lovrich, G.A. (2009) Reproductive biology of the crab Halicarcinus planatus (Brachyura, Hymenosomatidae) in sub-Antarctic waters. Polar Biology 33, 389401.CrossRefGoogle Scholar
Djunaidah, I.S., Wille, M., Kontara, E.K. and Sorgeloos, P. (2003) Reproductive performance and offspring quality in mud crab (Scylla paramamosian) broodstock fed different diets. Aquaculture International 11, 315.CrossRefGoogle Scholar
Hancock, M.A., Hughes, J.M. and Bunn, S.E. (1998) Influence of genetic and environmental factors on egg and clutch sizes among populations of Paratya australiensis Kemp (Decapoda: Atyidae) in upland rainforest streams, south-east Queensland. Oecologia 115, 483491.CrossRefGoogle Scholar
Lucas, J.S. (1980) Spider crabs of the family Hymenosomatidae (Crustacea; Brachyura) with particular reference to Australian species. Systematics and Biology. Records of the Australian Museum 33, 148238.CrossRefGoogle Scholar
Lucas, J.S. and Hodgkin, E.P. (1970a) Growth and reproduction of Halicarcinus australis (Haswell) (Crustacea, Brachyura) in the Swan estuary, Western Australia. I. Crab instars. Australian Journal of Marine and Freshwater Research 21, 149162.CrossRefGoogle Scholar
Lucas, J.S. and Hodgkin, E.P. (1970b) Growth and reproduction of Halicarcinus australis (Haswell) (Crustacea, Brachyura) in the Swan estuary, Western Australia. II. Larval stages. Australian Journal of Marine and Freshwater Research 21, 163174.CrossRefGoogle Scholar
McLay, C.L. and van den Brink, A.M. (2009) Relative growth and size at sexual maturity in Halicarcinus cookii (Brachyura: Hymenosomatidae): why are some crabs precocious moulters? Journal of the Marine Biological Association of the United Kingdom 89, 743752.CrossRefGoogle Scholar
Ng, P.K.L., Guinot, D. and Davie, F. (2008) Systema Brachyurorum. Part 1. Annotated checklist of extant brachyuran crabs of the world. Raffles Bulletin of Zoology 17, 1286.Google Scholar
Ramírez Llodra, E. (2002) Fecundity and life-history strategies in marine invertebrates. Advances in Marine Biology 43, 87162.CrossRefGoogle ScholarPubMed
Richer de Forges, B. (1977) Étude du crabe des Iles Kerguelen: Halicarcinus planatus (Fabricius). Comité National Français des Recherches Antarctiques, Paris 42, 71133.Google Scholar
Schuh, M. and Diesel, R. (1995) Breeding in a rockpool: larvae of the semiterrestrial crab Armases (=Sesarma) miersii (Rathbun) (Decapoda: Grapsidae) develop in a highly variable environnent. Journal of Experimental Marine Biology and Ecology 185, 109129.CrossRefGoogle Scholar
Sokal, R.R. and Rohlf, F.J. (1995) Biometry. The principles and practice of statistics in biological research. 3rd edition. New York: W.H. Freeman & Co.Google Scholar
Steele, D. and Steele, V.J. (1975) Egg size and duration of embryonic development in Crustacea. Internationale Revue Der Gesamten Hydrobiologie 60, 711715.CrossRefGoogle Scholar
Sui, L.Y., Wu, X.G., Wille, M., Cheng, X.Y. and Sorgeloos, P. (2008) Effect of dietary soybean lecithin on reproductive performance of Chinese mitten crab Eriocheir sinensis (H. Milne-Edwards) broodstock. Aquaculture International 17, 4556.CrossRefGoogle Scholar
Tapella, F., Lovrich, G.A., Romero, M.C. and Thatje, S. (2002) Reproductive biology of the crab Munida subrugosa (Decapoda: Anomura: Galatheidae) in the Beagle Channel. Journal of the Marine Biological Association of the United Kingdom 82, 589–585.CrossRefGoogle Scholar
van den Brink, A.M. and McLay, C.L. (2010) Competing for the last place: mating behavior in a pill-box crab, Halicarcinus cookie (Brachyura: Hymenosomatidae). Zoologischer Anzeiger 249, 2132.CrossRefGoogle Scholar
Vinuesa, J.H. (2005) Distribución de crustáceos decápodos y estomatópodos del golfo San Jorge. Revista de Biología Marina y Oceanografía 40, 721.CrossRefGoogle Scholar
Vinuesa, J.H. (2007) Reproduction of Munida gregaria (Decapoda: Galatheidae) in San Jorge Gulf, Southwest Atlantic Ocean. Journal of Crustacean Biology 27, 437444.CrossRefGoogle Scholar
Vinuesa, J.H. and Ferrari, L. (2008a) Postlarval development of Halicarcinus planatus females (Decapoda, Hymenosomatidae) in the estuary of the Deseado River, Argentina. Scientia Marina 72, 127172.CrossRefGoogle Scholar
Vinuesa, J.H. and Ferrari, L. (2008b) Reproduction of Halicarcinus planatus (Crustacea, Decapoda, Hymenosomatidae) in the Deseado River estuary, south-western Atlantic Ocean. Marine Biology 154, 345351.CrossRefGoogle Scholar
Vinuesa, J.H., Ferrari, L. and Momo, F. (2005) The spider crab Halicarcinus planatus (Fabricius) in the estuary of Puerto Deseado, Santa Cruz Province, Argentina. Berichte zur Polarforschung und Meeresforschung, Bremerhaven 507, 193194.Google Scholar
Wear, R.G. (1974) Incubation in British decapod Crustacea and the effects of temperature on the rate and success of embryonic development. Journal of the Marine Biological Association of the United Kingdom 54, 745762.CrossRefGoogle Scholar
Wen, X.B., Chen, L.Q., Zhou, Z.L., Ai, C.X. and Glenn, Y. (2002) Reproduction response of Chinese mitten-handed crab (Eriocheir sinensis) fed different sources of dietary lipid. Comparative Biochemistry and Physiology A 131, 675681.CrossRefGoogle ScholarPubMed
Zar, J.H. (1999) Biostatistical analysis. 8th edition. Upper Saddle River, NJ: Prentice-Hall.Google Scholar