Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T18:54:07.741Z Has data issue: false hasContentIssue false

Scaling Relations between Gas and Star Formation in Nearby Galaxies

Published online by Cambridge University Press:  27 April 2011

Frank Bigiel
Affiliation:
Department of Astronomy, Radio Astronomy Laboratory, University of California, Berkeley, CA 94720, USA email: bigiel@astro.berkeley.edu
Adam Leroy
Affiliation:
National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA
Fabian Walter
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High resolution, multi-wavelength maps of a sizeable set of nearby galaxies have made it possible to study how the surface densities of H i, H2 and star formation rate (ΣHI, ΣH2, ΣSFR) relate on scales of a few hundred parsecs. At these scales, individual galaxy disks are comfortably resolved, making it possible to assess gas-SFR relations with respect to environment within galaxies. ΣH2, traced by CO intensity, shows a strong correlation with ΣSFR and the ratio between these two quantities, the molecular gas depletion time, appears to be constant at about 2 Gyr in large spiral galaxies. Within the star-forming disks of galaxies, ΣSFR shows almost no correlation with ΣHI. In the outer parts of galaxies, however, ΣSFR does scale with ΣHI, though with large scatter. Combining data from these different environments yields a distribution with multiple regimes in Σgas – ΣSFR space. If the underlying assumptions to convert observables to physical quantities are matched, even combined datasets based on different SFR tracers, methodologies and spatial scales occupy a well define locus in Σgas – ΣSFR space.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Bigiel, F., Leroy, A., Walter, F., Brinks, E., de Blok, W. J. G., Madore, B., & Thornley, M. D. 2008, AJ, 136, 2846CrossRefGoogle Scholar
Bigiel, F., Leroy, A., Walter, F., Blitz, L., Brinks, E., de Blok, W. J. G., & Madore, B. 2010a, arXiv:1007.3498Google Scholar
Bigiel, F., Leroy, A., Seibert, M., Walter, F., Blitz, L., Thilker, D., & Madore, B. 2010b, ApJL, 720, L31CrossRefGoogle Scholar
Blanc, G. A., Heiderman, A., Gebhardt, K., Evans, N. J., & Adams, J. 2009, ApJ, 704, 842CrossRefGoogle Scholar
Boissier, S., Prantzos, N., Boselli, A. & Gavazzi, G. 2003, MNRAS, 346, 1215CrossRefGoogle Scholar
Bouché, N., et al. 2007, ApJ, 671, 303CrossRefGoogle Scholar
Buat, V., Deharveng, J. M., & Donas, J. 1989, A&A, 223, 42Google Scholar
Buat, V. 1992, A&A, 264, 444Google Scholar
Calzetti, D., et al. 2005, ApJ, 633, 871CrossRefGoogle Scholar
Calzetti, D., et al. 2007, ApJ, 666, 870CrossRefGoogle Scholar
Deharveng, J.-M., Sasseen, T. P., Buat, V., Bowyer, S., Lampton, M., & Wu, X. 1994, A&A, 289, 715Google Scholar
Gao, Y. & Solomon, P. M. 2004, ApJ, 606, 271CrossRefGoogle Scholar
Gil de Paz, A., et al. 2007, ApJS, 173, 185CrossRefGoogle Scholar
Greve, T. R., et al. 2005, MNRAS, 359, 1165CrossRefGoogle Scholar
Helfer, T. T., Thornley, M. D., Regan, M. W., Wong, T., Sheth, K., Vogel, S. N., Blitz, L., & Bock, D. C.-J. 2003, ApJS, 145, 259CrossRefGoogle Scholar
Heyer, M. H., Corbelli, E., Schneider, S. E. & Young, J. S. 2004, ApJ, 602, 723CrossRefGoogle Scholar
Kennicutt, R. C. 1989, ApJ, 344, 685CrossRefGoogle Scholar
Kennicutt, R. C. 1998a, ApJ, 498, 541CrossRefGoogle Scholar
Kennicutt, R. C. Jr., et al. 2003, PASP, 115, 928CrossRefGoogle Scholar
Kennicutt, R. C. Jr., et al. 2007, ApJ, 671, 333CrossRefGoogle Scholar
Leroy, A. K., Walter, F., Brinks, E., Bigiel, F., de Blok, W. J. G., Madore, B., & Thornley, M. D. 2008, AJ, 136, 2782CrossRefGoogle Scholar
Leroy, A. K., et al. 2009, AJ, 137, 4670CrossRefGoogle Scholar
Madore, B. F., van den Bergh, S., & Rogstad, D. H. 1974, ApJ, 191, 317CrossRefGoogle Scholar
Newton, K. 1980, MNRAS, 190, 689CrossRefGoogle Scholar
Onodera, S., et al. 2010, arXiv:1006.5764Google Scholar
Rahman, N., et al. 2010, arXiv:1009.3272Google Scholar
Sanduleak, N. 1969, AJ, 74, 47CrossRefGoogle Scholar
Schmidt, M. 1959, ApJ, 129, 243CrossRefGoogle Scholar
Schruba, A., Leroy, A. K., Walter, F., Sandstrom, K., & Rosolowsky, E. 2010, arXiv:1009.1651Google Scholar
Schuster, K. F., Kramer, C., Hitschfeld, M., Garcia-Burillo, S. & Mookerjea, B. 2007, A&A, 461, 143Google Scholar
Thilker, D. A., et al. 2005, ApJL, 619, L79CrossRefGoogle Scholar
Tosa, M. & Hamajima, K. 1975, PASJ, 27, 501Google Scholar
Walter, F., Brinks, E., de Blok, W. J. G., Bigiel, F., Kennicutt, R. C., Thornley, M. D., & Leroy, A. 2008, AJ, 136, 2563CrossRefGoogle Scholar
Wong, T. & Blitz, L. 2002, ApJ, 569, 157CrossRefGoogle Scholar
Young, J. S., Allen, L., Kenney, J. D. P., Lesser, A., & Rownd, B. 1996, AJ, 112, 1903CrossRefGoogle Scholar