Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T09:35:19.469Z Has data issue: false hasContentIssue false

Theory of Feedback in Clusters and Molecular Cloud Turbulence

Published online by Cambridge University Press:  27 April 2011

Enrique Vázquez-Semadeni*
Affiliation:
Centro de Radioastronomía y Astrofísica, UNAM, Campus MoreliaP.O. Box 3-72 (Xangari), Morelia, Michoacán, México email: e.vazquez@.crya.unam.mx
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I review recent numerical and analytical work on the feedback from both low- and high-mass cluster stars into their gaseous environment. The main conclusions are that i) outflow driving appears capable of maintaing the turbulence in parsec-sized clumps and retarding their collapse from the free-fall rate, although there exist regions within molecular clouds, and even some examples of whole clouds, which are not actively forming stars, yet are just as turbulent, so that a more universal turbulence-driving mechanism is needed; ii) outflow-driven turbulence exhibits specific spectral features that can be tested observationally; iii) feedback plays an important role in reducing the SFR; iv) nevertheless, numerical simulations suggest feedback cannot completely prevent a net contracting motion of clouds and clumps. Therefore, an appealing source for driving the turbulence everywhere in GMCs is the accretion from the environment, at all scales. In this case, feedback's most important role may be to prevent a fraction of the gas nearest to newly formed stars from actually reaching them, thus reducing the SFE.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Alves, J., Lombardi, M., & Lada, C. J. 2007, A&A, 462, L17Google Scholar
Audit, E. & Hennebelle, P. 2005, A&A, 433, 1Google Scholar
Ballesteros-Paredes, J., Vázquez-Semadeni, E., & Scalo, J. 1999, ApJ, 515, 286Google Scholar
Ballesteros-Paredes, J., Hartmann, L., & Vázquez-Semadeni, E. 1999, ApJ, 527, 285CrossRefGoogle Scholar
Banerjee, R., Klessen, R. S., & Fendt, C. 2007, ApJ, 668, 1028Google Scholar
Banerjee, R., Vázquez-Semadeni, E., Hennebelle, P., & Klessen, R. S. 2009, MNRAS, 398, 1082CrossRefGoogle Scholar
Bate, M. R. 2009, MNRAS, 392, 1363Google Scholar
Blitz, L. 1993, Protostars and Planets III, 125Google Scholar
Blitz, L. & Shu, F. H. 1980, ApJ, 238, 148CrossRefGoogle Scholar
Bonnell, I. A. & Bate, M. R. 2006, MNRAS, 370, 488Google Scholar
Bonnell, I. A., Bate, M. R., Clarke, C. J., & Pringle, J. E. 1997, MNRAS, 285, 201Google Scholar
Bonnell, I. A., Larson, R. B., & Zinnecker, H. 2007, Protostars and Planets V, 149Google Scholar
Brunt, C. M., Heyer, M. H. & Mac Low, M.-M. 2009, A&A, 504, 883Google Scholar
Carroll, J. J., Frank, A., Blackman, E. G., Cunningham, A. J., & Quillen, A. C. 2009, ApJ, 695, 1376CrossRefGoogle Scholar
Carroll, J. J., Frank, A., & Blackman, E. G. 2010, ApJ, 722, 145Google Scholar
Csengeri, T., Bontemps, S., Schneider, N., Motte, F., & Dib, S. 2010, arXiv:1009.0598Google Scholar
Cunningham, A. J., Frank, A., & Blackman, E. G. 2006a, ApJ, 646, 1059Google Scholar
Cunningham, A. J., Frank, A., Quillen, A. C., & Blackman, E. G. 2006b, ApJ, 653, 416Google Scholar
Cunningham, A. J., Frank, A., et al. 2009, ApJ, 692, 816CrossRefGoogle Scholar
Dale, J. E. & Bonnell, I. A. 2008, MNRAS, 391, 2Google Scholar
De Colle, F. & Raga, A. C. 2005, MNRAS, 359, 164Google Scholar
Evans, N. J., et al. 2009, ApJS, 181, 321CrossRefGoogle Scholar
Field, G. B., Blackman, E. G., & Keto, E. R. 2008, MNRAS, 385, 181Google Scholar
Field, G. B. & Saslaw, W. C. 1965, ApJ, 142, 568CrossRefGoogle Scholar
Folini, D. & Walder, R. 2006, A&A, 459, 1Google Scholar
Franco, J. & Cox, D. P. 1983, ApJ, 273, 243Google Scholar
Franco, J., Shore, S. N., & Tenorio-Tagle, G. 1994, ApJ, 436, 795Google Scholar
Galván-Madrid, R., Keto, E., Zhang, Q., Kurtz, S., Rodríguez, L. F., & Ho, P. T. P. 2009, ApJ, 706, 1036CrossRefGoogle Scholar
Hartmann, L. & Burkert, A. 2007, ApJ, 654, 988Google Scholar
Heitsch, F., Burkert, A., Hartmann, L. W., Slyz, A. D., & Devriendt, J. E. G. 2005, ApJ, 633, L113Google Scholar
Heitsch, F. & Hartmann, L. 2008, ApJ, 689, 290Google Scholar
Heitsch, F., Hartmann, L. W., Slyz, A. D., Devriendt, J. E. G., & Burkert, A. 2008, ApJ, 674, 316CrossRefGoogle Scholar
Heitsch, F., Slyz, A. D., Devriendt, J. E. G., Hartmann, L. W., & Burkert, A. 2006, ApJ, 648, 1052CrossRefGoogle Scholar
Hennebelle, P. & Audit, E. 2007, A&A, 465, 431Google Scholar
Hennebelle, P., Banerjee, R., Vázquez-Semadeni, E., Klessen, R. S., & Audit, E. 2008, A&A, 486, L43Google Scholar
Hennebelle, P. & Chabrier, G. 2008, ApJ, 684, 395Google Scholar
Hennebelle, P. & Pérault, M. 1999, A&A, 351, 309Google Scholar
Heyer, M. H. & Brunt, C. 2007, IAU Symposium 237, 9Google Scholar
Hunter, J. H. Jr., Sandford, M. T. II, Whitaker, R. W., Klein, R. I. 1986, ApJ, 305, 309CrossRefGoogle Scholar
Kirk, H., Johnstone, D. & Di Francesco, J. 2006, ApJ, 646, 1009Google Scholar
Klessen, R. S. & Hennebelle, P. 2009, A&A in press (arXiv:0912.0288)Google Scholar
Koyama, H. & Inutsuka, S.-i. 2002, ApJ, 564, L97Google Scholar
Krumholz, M. R., Matzner, C. D., & McKee, C. F. 2006, ApJ, 653, 361CrossRefGoogle Scholar
Krumholz, M. R. & McKee, C. F. 2005, ApJ, 630, 250Google Scholar
Krumholz, M. R., McKee, C. F., & Klein, R. I. 2005, Nature, 438, 332CrossRefGoogle Scholar
Li, Z.-Y. & Nakamura, F. 2006, ApJL, 640, L187Google Scholar
Lombardi, M., Alves, J., & Lada, C. J. 2006, A&A, 454, 781Google Scholar
Maddalena, R. J. & Thaddeus, P. 1985, ApJ, 294, 231Google Scholar
Matzner, C. D. 2002, ApJ, 566, 302Google Scholar
Matzner, C. D. 2007, ApJ, 659, 1394CrossRefGoogle Scholar
McKee, C. F. 1989, ApJ, 345, 782Google Scholar
Motte, F., Andre, P., & Neri, R. 1998, A&A, 336, 150Google Scholar
Nakamura, F. & Li, Z.-Y. 2007, ApJ, 662, 395Google Scholar
Norman, C. & Silk, J. 1980, ApJ, 238, 158Google Scholar
Offner, S. S. R., Klein, R. I., McKee, C. F., & Krumholz, M. R. 2009, ApJ, 703, 131Google Scholar
Onishi, T., et al. 1999, PASJ, 51, 871CrossRefGoogle Scholar
Oort, J. H. 1954, Bull. Astron. Inst. Netherlands, 12, 177Google Scholar
Padoan, P. & Nordlund, Å. 2002, ApJ, 576, 870Google Scholar
Price, D. J. & Bate, M. R. 2009, MNRAS, 398, 33Google Scholar
Quillen, A. C., Thorndike, S. L., Cunningham, A., Frank, A., Gutermuth, R. A., Blackman, E. G., Pipher, J. L., & Ridge, N. 2005, ApJ, 632, 941CrossRefGoogle Scholar
Reipurth, B. & Bally, J. 2001, ARAA, 39, 403Google Scholar
Salpeter, E. E. 1955, ApJ, 121, 161Google Scholar
Schmidt, M. 1959, ApJ, 129, 243CrossRefGoogle Scholar
Shu, F. H. 1977, ApJ, 214, 488Google Scholar
Shu, F. H., Lizano, S., Ruden, S. P., & Najita, J. 1988, ApJL, 328, L19Google Scholar
Smith, R. J., Clark, P. C., & Bonnell, I. A. 2009, MNRAS, 396, 830Google Scholar
Vazquez-Semadeni, E. 2010, in The Dynamic ISM: A celebration of the Canadian Galactic Plane Survey, ASP Conference Series (arXiv:1009.3962)Google Scholar
Vázquez-Semadeni, E., Colín, P., Gómez, G. C., Ballesteros-Paredes, J., & Watson, A. W. 2010, ApJ, 715, 1302Google Scholar
Vázquez-Semadeni, E., Gómez, G. C., Jappsen, A. K., Ballesteros-Paredes, J., González, R. F., & Klessen, R. S. 2007, ApJ, 657, 870Google Scholar
Vázquez-Semadeni, E., Gómez, G. C., Jappsen, A.-K., Ballesteros-Paredes, J., & Klessen, R. S. 2009, ApJ, 707, 1023Google Scholar
Vázquez-Semadeni, E., Ryu, D., Passot, T., González, R. F., & Gazol, A. 2006, ApJ, 643, 245Google Scholar
Vishniac, E. T. 1994, ApJ, 428, 186Google Scholar
Wang, P., Li, Z.-Y., Abel, T., & Nakamura, F. 2010, ApJ, 709, 27Google Scholar
Whitworth, A. 1979, MNRAS, 186, 59Google Scholar
Williams, J. P. & McKee, C. F. 1997, ApJ, 476, 166Google Scholar
Zuckerman, B. & Evans, N. J. II 1974, ApJL, 192, L149CrossRefGoogle Scholar