Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T07:14:23.963Z Has data issue: false hasContentIssue false

Modeling High-Mass Star Formation and Ultracompact H ii Regions

Published online by Cambridge University Press:  27 April 2011

Ralf S. Klessen
Affiliation:
Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg, Germany
Thomas Peters
Affiliation:
Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg, Germany
Robi Banerjee
Affiliation:
Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg, Germany
Mordecai-Mark Mac Low
Affiliation:
Department of Astrophysics, American Museum of Natural History, 79th Street at Central Park West, New York, New York 10024-5192, USA
Roberto Galván-Madrid
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA Centro de Radioastronomía y Astrofísica, UNAM, A.P. 3-72 Xangari, Morelia 58089, Mexico
Eric R. Keto
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Massive stars influence the surrounding universe far out of proportion to their numbers through ionizing radiation, supernova explosions, and heavy element production. Their formation requires the collapse of massive interstellar gas clouds with very high accretion rates. We discuss results from the first three-dimensional simulations of the gravitational collapse of a massive, rotating molecular cloud core that include heating by both non-ionizing and ionizing radiation. Local gravitational instabilities in the accretion flow lead to the build-up of a small cluster of stars. These lower-mass companions subsequently compete with the high-mass star for the same common gas reservoir and limit its overall mass growth. This process is called fragmentation-induced starvation, and explains why massive stars are usually found as members of high-order stellar systems. These simulations also show that the H ii regions forming around massive stars are initially trapped by the infalling gas, but soon begin to fluctuate rapidly. Over time, the same ultracompact H ii region can expand anisotropically, contract again, and take on any of the observed morphological classes. The total lifetime of H ii regions is given by the global accretion timescale, rather than their short internal sound-crossing time. This solves the so-called lifetime problem of ultracompact H ii region. We conclude that the the most significant differences between the formation of low-mass and high-mass stars are all explained as the result of rapid accretion within a dense, gravitationally unstable flow.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Bate, M. R. 2000, Mon. Not. R. Astron. Soc., 314, 33CrossRefGoogle Scholar
Bonnell, I. A., Bate, M. R., Clarke, C. J., & Pringle, J. E. 2001 a, Mon. Not. R. Astron. Soc., 323, 785Google Scholar
Bonnell, I. A., Vine, S. G., & Bate, M. R. 2004, Mon. Not. R. Astron. Soc., 349, 735CrossRefGoogle Scholar
Federrath, C., Banerjee, R., Clark, P. C., & Klessen, R. S. 2010, Astrophys. J., 713, 269Google Scholar
Franco-Hernández, R. & Rodríguez, L. F. 2004, Astrophys. J., 604, L105CrossRefGoogle Scholar
Fryxell, B., Olson, K., Ricker, P., et al. 2000, Astrophys. J. Suppl. Ser., 131, 273CrossRefGoogle Scholar
Galván-Madrid, R., Rodríguez, L. F., Ho, P. T. P., & Keto, E. 2008, Astrophys. J., 674, L33CrossRefGoogle Scholar
Ho, P. T. P. & Haschick, A. D. 1981, Astrophys. J., 248, 622CrossRefGoogle Scholar
Hosokawa, T. & Omukai, K. 2009, Astrophys. J., 691, 823CrossRefGoogle Scholar
Kahn, F. D. 1974, Astron. Astrophys., 37, 149Google Scholar
Keto, E. 2002, Astrophys. J., 580, 980CrossRefGoogle Scholar
Keto, E. 2003, Astrophys. J., 599, 1196CrossRefGoogle Scholar
Keto, E. 2007, Astrophys. J., 666, 976CrossRefGoogle Scholar
Keto, E. & Klaassen, P. 2008, Astrophys. J., 678, L109CrossRefGoogle Scholar
Keto, E. & Wood, K. 2006, Astrophys. J., 637, 850Google Scholar
Kim, K.-T. & Koo, B.-C. 2001, Astrophys. J., 549, 979CrossRefGoogle Scholar
Klessen, R. S. 2001, Astrophys. J., 556, 837CrossRefGoogle Scholar
Klessen, R. S. & Burkert, A. 2000, Astrophys. J. Suppl. Ser., 128, 287CrossRefGoogle Scholar
Klessen, R. S. & Burkert, A. 2001, Astrophys. J., 549, 386CrossRefGoogle Scholar
Kratter, K. M. & Matzner, C. D. 2006, Mon. Not. R. Astron. Soc., 373, 1563CrossRefGoogle Scholar
Krumholz, M. R., Klein, R. I., & McKee, C. F. 2007, Astrophys. J., 656, 959Google Scholar
Krumholz, M. R., Klein, R. I., McKee, C. F., Offner, S. S. R., & Cunningham, A. J. 2009, Science, 323, 754CrossRefGoogle Scholar
Kurtz, S., Churchwell, E., & Wood, D. O. S. 1994, Astrophys. J. Suppl. Ser., 91, 659CrossRefGoogle Scholar
Larson, R. B. & Starrfield, S. 1971, Astron. Astrophys., 13, 190Google Scholar
Motte, F., Bontemps, S., Schneider, N., Schilke, P., & Menten, K. M. 2008, in Astronomical Society of the Pacific Conference Series, Vol. 387, Massive Star Formation: Observations Confront Theory, ed. Beuther, H., Linz, H., & Henning, T., 22–29Google Scholar
Myers, P. C., Dame, T. M., Thaddeus, P., et al. 1986, Astrophys. J., 301, 398CrossRefGoogle Scholar
Nakano, T., Hasegawa, T., & Norman, C. 1995, Astrophys. J., 450, 183CrossRefGoogle Scholar
Paxton, B. 2004, Publ. Astron. Soc. Pac., 116, 699CrossRefGoogle Scholar
Peters, T., Banerjee, R., Klessen, R. S., Mac Low, M.-M., Galván-Madrid, R., & Keto, E. R. 2010 a, Astrophys. J., 711, 1017CrossRefGoogle Scholar
Peters, T., Mac Low, M.-M., Banerjee, R., Klessen, R. S., & Dullemond, C. P. 2010 b, Astrophys. J., in pressGoogle Scholar
Peters, T., Klessen, R. S., Banerjee, R. & Mac Low, M.-M. 2010 c, Astrophys. J., submittedGoogle Scholar
Rijkhorst, E.-J., Plewa, T., Dubey, A., & Mellema, G. 2006, Astron. Astrophys., 452, 907Google Scholar
Rodríguez, L. F., Gómez, Y., & Tafoya, D. 2007, Astrophys. J., 663, 1083Google Scholar
Sigalotti, L. D. G., de Felice, F., & Daza-Montero, J. 2009, Astrophys. J., 707, 1438Google Scholar
Wolfire, M. G. & Cassinelli, J. P. 1987, Astrophys. J., 319, 850Google Scholar
Wood, D. O. S. & Churchwell, E. 1989, Astrophys. J. Suppl. Ser., 69, 831CrossRefGoogle Scholar
Yorke, H. W. & Krügel, E. 1977, Astron. Astrophys., 54, 183Google Scholar
Yorke, H. W. & Sonnhalter, C. 2002, Astrophys. J., 569, 846CrossRefGoogle Scholar
Zhang, Q., Ho, P. T. P., & Ohashi, N. 1998, Astrophys. J., 494, 636CrossRefGoogle Scholar
Zinnecker, H. & Yorke, H. W. 2007, Ann. Rev. Astron. Astrophys., 45, 481CrossRefGoogle Scholar