Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-29T09:07:16.820Z Has data issue: false hasContentIssue false

Thermal effects on the Raman spectra of nanodiamonds

Published online by Cambridge University Press:  22 March 2011

Marc Chaigneau
Affiliation:
LPICM, Ecole Polytechnique, CNRS, 91128 Palaiseau, France
Hugues A. Girard
Affiliation:
PMC, Ecole Polytechnique, CNRS, 91128 Palaiseau, France CEA, LIST, Diamond Sensors Laboratory, F91191 Gif-sur-Yvette, France
Jean-Charles Arnault
Affiliation:
CEA, LIST, Diamond Sensors Laboratory, F91191 Gif-sur-Yvette, France
Razvigor Ossikovski
Affiliation:
LPICM, Ecole Polytechnique, CNRS, 91128 Palaiseau, France
Get access

Abstract

We report on the influence of the laser heating effect, potentially present in a Raman scattering experiment, on the behaviour of carbon phonon lines in the spectra of nanodiamond particles. Aside from the laser power used in the experiment, the extent of the thermal effect in question depends also on the nanodiamonds origin (obtained through detonation and high pressure high temperature techniques) as well as on the nanoparticles size. Laser heating should be properly taken into account when discussing Raman spectra of carbonaceous species, in particular, prior to addressing peak assignment and possible quantum confinement effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Solin, S. A., Ramdas, A. K., Phys. Rev. B 1, 1687 (1970).Google Scholar
2. Ager, J. W. III, Veirs, D. K., Rosenblatt, G. M., Phys. Review B 43, 6491 (1991).Google Scholar
3. Yoshikawa, M., Mori, Y., Maegawa, M., Katagiri, G., Ishida, H., Ishitani, A., Appl. Phys. Lett. 62, 3114 (1993).Google Scholar
4. Yoshikawa, M., Mori, Y., Obata, H., Maegawa, M., Katagiri, G., Ishida, H., Ishitani, A., Appl. Phys. Lett. 67, 694 (1995).Google Scholar
5. Namba, Y., Heidarpour, E., Nakayama, M., J. Appl. Phys. 72, 1748 (1992).Google Scholar
6. Sun, K. W., Wang, J. Y., Ko, T. Y., J. Nanopart. Res. 10, 115 (2008).Google Scholar
7. Sun, K. W., Wang, J. Y., Ko, T. Y., Appl. Phys. Lett. 92, 153115 (2008).Google Scholar
8. Osswald, S., Mochalin, V. N., Havel, M., Yushin, G., Gogotsi, Y., Phys. Rev. B 80, 075419 (2009).Google Scholar
9. Knight, D. S., White, W. B., J. Mater. Res. 4, 385 (1989).Google Scholar
10. Mykhaylyk, O. O., Solonin, Y., Batchelder, D. N., Brydson, R., J. Appl. Phys. 97, 074302 (2005).Google Scholar
11. Ferrari, A. C., Robertson, J., J. Philos. Trans. R. Soc. London, Ser. A 362, 2477 (2004).Google Scholar
12. Prawer, S., Nemanich, R. J., Phil. Trans. R. Soc. Lond. A 362, 2537 (2004).Google Scholar
13. Mochalin, V., Osswald, S., Gogotsi, Y., Chem. Mater. 21, 273 (2009).Google Scholar
14. Bursill, L. A., Fullerton, A. L., Bourgeois, L. N., Int. J. Modern Phys. B 15 (2001) 4087.10.1142/S0217979201007889Google Scholar
15. Osswald, S., Yushin, G., Mochalin, V., Kucheyev, S. O., Gogotski, Y., J. Am. Chem. Soc. 128, 11635 (2006).10.1021/ja063303nGoogle Scholar
16. Arnault, J. C., Saada, S., Nesladek, M., Williams, O. A., Haenen, K., Bergonzo, P., Polini, R., Osawa, E., Phys. Stat. Sol. (a) 205 (2008) 2108.Google Scholar
17. Girard, H. A., Arnault, J. C., Perruchas, S., Saada, S., Gacoin, T., Boilot, J.-P., Bergonzo, P., Diam. Relat. Mater. 19, 1117 (2010).Google Scholar
18. Osswald, S., Behler, K., Gogotsi, Y., J. Appl. Phys. 104, 074308 (2008).Google Scholar
19. Krueger, A., Advanced Materials 20, 2445 (2008).10.1002/adma.200701856Google Scholar
20. Tuinstra, F., Koenig, J. L., J. Chem. Phys. 53, 1126 (1970).Google Scholar
21. Fayette, L., Marcus, B., Mermoux, M., Tourillon, G., Laffon, K., Parent, P., Le Normand, F., Phys. Rev. B 57, 14123 (1998).Google Scholar
22. Liu, M. S., Bursill, L. A., Prawer, S., Phys. Rev. B 61, 3391 (2000).Google Scholar
23. Piccirillo, C., Mainwood, A., Davies, G., Penchina, C. M., Tajani, A., Bernard, M., Deneuville, A., Phys. Stat. Sol. 193, 529 (2002).10.1002/1521-396X(200210)193:3<529::AID-PSSA529>3.0.CO;2-53.0.CO;2-5>Google Scholar
24. Osswald, S., Havel, M., Gogotsi, Y., J. Raman Spectrosc. 38, 728 (2007).Google Scholar
25. Osswald, S., Flahaut, E., Gogotsi, Y., Chem. Mater. 18, 1525 (2006).Google Scholar
26. Kalish, R., Reznik, A., Prawer, S., Saada, D., Adler, J., Phys. Stat. Sol.A 174, 83 (1999).Google Scholar
27. Cappelli, E., Scilletta, C., Orlando, S., Valentini, V., Servidori, M., Appl. Surf. Sci. 255, 5620 (2009).Google Scholar
28. Lipp, M. J., Baonza, V. G., Evans, W. J., Lorenzana, H., Phys. Rev. B 56, 5978 (1997).Google Scholar