Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T05:41:49.372Z Has data issue: false hasContentIssue false

Stoichiometry and Adhesion of Al/WC

Published online by Cambridge University Press:  21 March 2011

Donald J. Siegel
Affiliation:
Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green St., Urbana, IL, 61801.
Louis G. Hector Jr.
Affiliation:
GM Research and Development Center, 30500 Mound Road, P.O. Box 9055, Warren, MI 48090
James B. Adams
Affiliation:
Chemical and Materials Engineering Department, Arizona State University, Tempe, AZ 85287-6006.
Get access

Abstract

We examine the relative stability and adhesion of nonstoichiometric (polar) Al/WC interfaces and WC(0001) surfaces using Density Functional Theory as implemented in a planewave, pseudopo- tential formalism. Relaxed atomic geometries and the ideal work of adhesion were calculated for six different interfacial structures, taking into account both W- and C-terminations of the carbide. Based on the surface and interfacial free energies, we find that both the clean surface and the optimal interface geometry are W-terminated. However, the largest adhesion energies are obtained with the C-termination, consistent with an argument based on surface reactivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Finnis, M. W.. J. Phys: Cond. Mat., 8:5811, 1996.Google Scholar
[2] Siegel, D. J., Hector, L. G. Jr., and Adams, J. B.. Phys. Rev. B, 2001. submitted.Google Scholar
[3] Zhang, W. and Smith, J. R.. Phys. Rev. Lett., 85:3225, 2000.Google Scholar
[4] Dudiy, S. V., Hartford, J., and Lundqvist, B. I.. Phys. Rev. Lett., 85:1898, 2000.Google Scholar
[5] Toth, L. E.. Transition Metal Carbides and Nitrides. Academic Press, 1971.Google Scholar
[6] Siegel, D. J., Hector, L. G. Jr., and Adams, J. B.. Surf. Sci., to be submitted, 2001.Google Scholar
[7] Hohenberg, P. and Kohn, W.. Phys. Rev., 136:864B, 1964.Google Scholar
[8] Kohn, W. and Sham, L. J.. Phys. Rev., 140:1133A, 1965.Google Scholar
[9] Kresse, G. and Furthmüller, J.. Phys. Rev. B, 54:11169, October 1996.Google Scholar
[10] Perdew, J. P. and Zunger, A.. Phys. Rev. B, 23:5048, 1981.Google Scholar
[11] Perdew, J. P., Chevary, J. A., Vosko, S. H. et al. Phys. Rev. B, 46:6671, 1992.Google Scholar
[12] Feynman, R. P.. Phys. Rev., 56:340, 1939.Google Scholar
[13] Hellmann, H.. Einfuhrung in die Quantumchemie. Deuticke, Leipzig, 1937.Google Scholar
[14] Kresse, G. and Hafner, J.. J. Phys: Cond. Mat., 6:8245, 1994.Google Scholar
[15] Louie, S. G., Froyen, S., and Cohen, M. L.. Phys. Rev. B, 26:1738, 1982.Google Scholar
[16] Kresse, G. and Joubert, D.. Phys. Rev. B, 59:1758, 1999.Google Scholar
[17] Liu, A. Y., Wentzcovitch, R. M., and Cohen, M. L.. Phys. Rev. B, 38:9483, 1988.Google Scholar
[18] Rappe, A. M., Rabe, K. M., Kaxiras, E., and Joannopoulos, J. D.. Phys. Rev. B, 41:1227, 1990.Google Scholar
[19] Batyrev, I., Alavi, A., and Finnis, M. W.. Faraday Discuss., 114:33, 2000.Google Scholar
[20] Rapcewicz, K., Chen, B., Yakobson, B., and Bernholc, J.. Phys. Rev. B, 57:7281, 1998.Google Scholar
[21] Zhang, W. and Smith, J. R.. Phys. Rev. B, 61:16883, 2000.Google Scholar
[22] Smith, J. R., Hong, T., and Srolovitz, D. J.. Phys. Rev. Lett., 72:4021, June 1994.Google Scholar