Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T11:02:34.221Z Has data issue: false hasContentIssue false

Polymer Based Photodetectors

Published online by Cambridge University Press:  17 March 2011

K. S. Narayan
Affiliation:
Chemistry and Physics of Material Unit Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
D. Kabra
Affiliation:
Chemistry and Physics of Material Unit Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
S. Dutta
Affiliation:
Chemistry and Physics of Material Unit Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
Get access

Abstract

Recent developments in our laboratory related to polymer-based light sensors are reviewed. The inherent processibility of the active polymer medium is utilized in the implementation of different designs for the opto-electronic applications. The utility of these devices as sensitive photodetectors, image sensors and position sensitive detectors is demonstrated. The schottky-type layer formation at interfaces of polymers such as polyalkylthiophenes and aluminum accompanied by the enhanced photo-induced charge separation due to high local electric field is tapped for some of these device structures. The sensitivity of polymer-based field effect transistors to light also provides a convenient lateral geometry for efficient optical-coupling and control of the transistor state. The range of these polymer-detectors available with the option of operating in the diode and transistor modes should be an attractive feature for many potential applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Yu, Gang, Srdanoy, G., Wang, H., Cao, Y., and Heeger, A. J., Proc. SPIE Int. Soc. Opt. Eng. 4108, 48 (2001)Google Scholar
[2] Narayan, K. S. and Singh, Th. B., Appl. Phys. Lett. 47, 345 (1999).Google Scholar
[3] Nanda, J., Narayan, K.S., Kuruvilla, B.A., Murthy, G. L., and Sarma, D.D., Appl. Phys. Lett. 72, 1335 (1998).Google Scholar
[4] Greenham, N. C., Peng, X., and Alivisatos, A. V., Phys. Rev. B 54, 17628 (1996).Google Scholar
[5] Singh, Th. B., Waghmare, U. V., Narayan, K.S., Appl. Phys. Lett. 80, 1213 (2002).Google Scholar
[6] Narayan, K. S. and Kumar, N., Appl. Phys. Lett. 79, 1891 (2001).Google Scholar
[7] Dutta, S. and Narayan, K. S., Phys. Rev. B 68, 125208 (2003).Google Scholar
[8] Dutta, S. and Narayan, K. S., Adv. Mater. (communicated).Google Scholar
[9] Kabra, D., Singh, T. B., and Narayan, K. S., Appl. Phys. Lett. (communicated).Google Scholar
[10] Dimitrakopoulos, C. D. and Mascaro, D. J., IBM J. Res. Dev. 45, 11 (2001).Google Scholar
[11] , Dodabalapur, Bao, Z., Makhija, A., Laquindanum, J. G., Raju, V. R., Feng, Y., Katz, H. E., and Rogers, J., Appl. Phys. Lett. 73, 142 (1998).Google Scholar
[12] Peumans, Bulovic, Forrest, Appl. Phys. Lett. 76, 3855 (2000).Google Scholar
[13] Nagamatsu, S., Pandey, S. S., Takashima, W., Endo, T., Rikukawa, M. and, Kaneto, K., Synth. Met. 121, 1563 (2001).Google Scholar
[14] Bantikassegn, W. and Inganas, O., Synth. Met. 87, 5 (1997).Google Scholar
[15] Aamodt, L. C. and Murphy, J. C., J. Appl. Phys. 52, 4903 (1980).Google Scholar