Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-29T12:52:46.767Z Has data issue: false hasContentIssue false

Dewetting on the Surface of Rutile

Published online by Cambridge University Press:  15 March 2011

Shelley R. Gilliss
Affiliation:
Carter Dept. of Chemical Engineering and Materials Science, University of Minnesota 421 Washington Ave. S.E., Minneapolis MN 55455, USA
N. Ravishankar
Affiliation:
Indian Institute of Science, Bangalore, India
C. Barry
Affiliation:
Carter Dept. of Chemical Engineering and Materials Science, University of Minnesota 421 Washington Ave. S.E., Minneapolis MN 55455, USA
Get access

Abstract

After annealing a continuous SiO2 film on the (001) surface of TiO2, the film dewets and then spreads to form a complex pattern. The final droplet morphology displays a densely branching morphology similar to those seen in computer-simulated models. It is proposed that Bénard-Marangoni convection cells form within the film before dewetting occurs. The formation of Bénard-Marangoni convection cells prior to dewetting results in the uniform size and spacing of the droplets on the surface. These convection cells form at temperature when the TiO2 substrate dissolves into the SiO2 thin film. The change in composition results in regions of differing surface tensions and therefore leads to the formation of the convection cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chen, D.A., Bartlet, M.C., Hwang, R.Q. and McCarty, K.F.. Surf. Sci. 2000;450: 7897.Google Scholar
2. Muscat, J. and Harrison, N.M.. Surf. Sci. 2000;446: 119127.Google Scholar
3. Jak, J.J.J., Konstapel, C., Kreuningen, A. van, Chrost, J., Verhoweven, J. and Frenken, J.W.M.. Surf. Sci. 2001;474: 2836.Google Scholar
4. Dingwell, D.B., Paris, E., Seifert, F., Mottana, A. and Romano, C.. Phys. Chem. Miner. 1994;21: 501509.Google Scholar
5. Dingwell, D.B.. in Structure, Dynamics and Properties of Silicate Melts, Vol. 32, Mineral. Soc, Amer., Washington (1995). pp. 2166.Google Scholar
6. Dingwell, D.B.. in Ultrahigh-Pressure Mineralogy, Vol. 37, Mineral. Soc, Amer., Washington (1998). pp. 397424.Google Scholar
7. Liska, M., Simurka, P., Antalik, J. and Perichta, P.. Chem. Geol. 1996;128: 199206.Google Scholar
8. Higazy, A.A., Hussein, A.M., Ewaida, M.A. and Elhofy, M.I.. Phys. Chem. Glass. 1987;28: 164167.Google Scholar
9. Paris, E., Dingwell, D.B., Seifert, F.A., Mottana, A. and Romano, C.. Phys. Chem. Miner. 1994;21: 510515.Google Scholar
10. Schroeder, H.. Physics of Thin Films: Advances in Research and Development, Academic Press, New York (1969).Google Scholar
11. Miska, H.A.. Engineered Materials Handbook, Vol. 4, ASM, Metals Park, OH (1992).Google Scholar
12. Karthikeyan, A. and Almeida, R.M.. J. of Non-Cryst. Sol. 2000;274: 169174.Google Scholar
13. Yamaguci, T. and Kanai, K.. J. Am. Ceram. Soc. 1994;77: 847–48.Google Scholar
14. Burleson, M.. The Ceramic Glaze Handbook, Lark Books, New York (2001).Google Scholar
15. Hopper, R.. The Ceramic Spectrum: A simplified approach to glaze and color development, Chilton Book Company, Radnor, PA (1984).Google Scholar
16. Li, M., Hebenstreit, W., Diebold, U., Tyryshkin, A.M., Bowman, M.K., Dunham, G.G. and Henderson, M.A.. J. Phys. Chem. 2000;104: 49444950.Google Scholar
17. Bénard, H.. Rev. Gen. Sci. Pure Appl. 1900;11: 12611309.Google Scholar
18. Koschmieder, E.L.. Bénard Cells and Taylor Vortices, Cambridge University Press, New York (1993).Google Scholar
19. Cartwright, J.H.E., Piro, O. and Villacampa, A.I.. Physica A 2002;314: 291298.Google Scholar