Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T15:00:12.665Z Has data issue: false hasContentIssue false

Large Field Emission from Vertically Well-aligned Carbon Nanotubes

Published online by Cambridge University Press:  15 March 2011

Jung Inn Sohn
Affiliation:
Dept. of Materials Science and Engineering, Kwangju Institute of Science and Technology (K-JIST), Kwangju, Korea 500-712.
Seonghoon Lee
Affiliation:
Dept. of Materials Science and Engineering, Kwangju Institute of Science and Technology (K-JIST), Kwangju, Korea 500-712.
Yoon-Ho Song
Affiliation:
Micro-Electronics Tech. Labs., ETRI, Taejon, Korea 305-350.
Sung-Yool Choi
Affiliation:
Micro-Electronics Tech. Labs., ETRI, Taejon, Korea 305-350.
Kyoung-Ik Cho
Affiliation:
Micro-Electronics Tech. Labs., ETRI, Taejon, Korea 305-350.
Kee-Soo Nam
Affiliation:
Micro-Electronics Tech. Labs., ETRI, Taejon, Korea 305-350.
Young-Il Kang
Affiliation:
Micro-Electronics Tech. Labs., ETRI, Taejon, Korea 305-350.
Get access

Abstract

We have grown well-aligned carbon nanotube arrays by thermal chemical vapor deposition at 800°C on Fe nanoparticles deposited by a pulsed laser on a porous Si substrate. Porous Si substrates were prepared by the electrochemical etching of p-Si(100) wafers with resistivities of 3 to 6 ωcm. These well-aligned carbon nanotube field emitter arrays are suitable for electron emission applications such as cold-cathode flat panel displays and vacuum microelectronic devices like microwave power amplifier tubes. Field emission characterization has been performed on the CNT-cathode diode device at room temperature and in a vacuum chamber below 10−6 Torr. The anode is maintained at a distance of 60[.proportional]m away from the carbon nanotube cathode arrays through an insulating spacer of polyvinyl film. The measured field emitting area is 4.0×10−5cm2. Our carbon nanotube field emitter arrays emit 1mA/cm2at the electric field, 2V/[.proportional]m. And they emit a large current density as high as 80mA/cm2 at 3V/[.proportional]m. The open tip structure of our carbon nanotubes and their good adhesion through Fe nanoparticles to the Si substrate are part of the reason why we can attain a large field emission current density within a low field. The field emitter arrays in our diode device are vertically well-aligned carbon nanotubes on the Si-wafer substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Treachy, M.M., Ebbesen, T. W., and Gibson, J. M., Nature 381, 678 (1996).Google Scholar
2. Ruoff, R. S. and Lorents, D. C., Carbon 33, 925930, (1995).Google Scholar
3. Saito, R., Dresselhaus, G., and Dresselhaus, M. S., Physical Properties of Carbon Nanotubes, (Imperial College Press, London, 1999), Chapt. 4.Google Scholar
4. Liu, C., Fan, Y. Y., Liu, M., Cong, H. T., Cheng, H. M., and Dresselhaus, M. S. Science, 286, 1127 (1999).Google Scholar
5. Rinzler, A. G., Hafner, J. H., Nikolaev, P., Lou, L., Kim, S. G., Tomanek, D., Nordlander, P., Colbert, D. T., and Smalley, R. E., Science 269, 1550 (1995).Google Scholar
6. Choi, W. B., Chung, D. S., Kang, J. H., Kim, H. Y., Jin, Y. W., Han, I. T., Lee, Y. H., Jung, J. E., Lee, N. S., Park, G. S., and Kim, J. M., Appl. Phys. Lett. 75, 3129 (1999).Google Scholar
7. Tans, S. J., Verschueren, A.R.M., Dekker, C., Nature 393, 49 (1998).Google Scholar
8. Gomer, R., Field Emission and Field Ionization. Cambridge, MA: Harvard Univ. Press, (1961).Google Scholar
9. Rinzler, A. G., Hafner, J. H., Nikolaev, P., Lou, L., Kim, S. G., Tomanek, D., Nordlander, P., Colbert, D. T., and Smalley, R. E., Science 269, 1550 (1995).Google Scholar
10. Zhu, W., Bower, C., Zhou, O., Kochanski, G., and Jin, S., Appl. Phys. Lett. 75, 873 (1999).Google Scholar
11. Heer, W. A. de, Chatelain, A., and Ugarte, D., Science 270, 1179 (1995).Google Scholar
12. Saito, Y., Uemura, S., and Hamaguchi, K., Jpn. J. Appl. Phys., Part 2 37, L346 (1998).Google Scholar
13. Wang, Q. H., Setlur, A. A., Lauerhaas, J. M., Dai, J. Y., Seelig, E. W., and Chang, R. P. H., Appl. Phys. Lett. 72, 2912 (1998).Google Scholar
14. Bonard, J. M., Salvetat, J. P., Stockli, T., Heer, W. A. de, Forro, L., and Chatelain, A., Appl. Phys. Lett. 73, 918 (1998).Google Scholar
15. Wang, Q. H., Corrigan, T. D., Dai, J. Y., Chang, R. P. H., and Krauss, A. R., Appl. Phys. Lett. 70, 3308 (1997).Google Scholar
16. Rao, A. M., Jacques, D., Haddon, R. C., Zhu, W., Bower, C., Jin, S., Appl. Phys. Lett. 76, 3813 (2000).Google Scholar
17. 16. Fan, S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M., Dai, H., Science 283, 512 (1999)Google Scholar
18. Colbert, D. T., and Smalley, R. E., Carbon 33, 921 (1995).Google Scholar
19. Ihm, J. and Han, S., The 5th Workshop on Developments and Industial Application of Carbon Nanotubes, p17, Sept. (1999).Google Scholar