Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T18:26:17.864Z Has data issue: false hasContentIssue false

Resonance effect for strong increase of fusion gains at thermal compression for volume ignition of Hydrogen Boron-11

Published online by Cambridge University Press:  15 March 2011

M. Kouhi*
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran-Poonak, Iran
M. Ghoranneviss
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran-Poonak, Iran
B. Malekynia
Affiliation:
Department of Physics, Islamic Azad University, Gachsaran Branch, Gachsaran, Iran
H. Hora
Affiliation:
Department of theoretical physics, University of New South Wales, Sydney, Australia
G.H. Miley
Affiliation:
Deparment of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana, Illinois
A.H. Sari
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran-Poonak, Iran
N. Azizi
Affiliation:
Islamic Azad University, Khoy Branch, Khoy, Iran
S.S. Razavipour
Affiliation:
Department of Physics, Islamic Azad University, Gachsaran Branch, Gachsaran, Iran
*
Address correspondence and reprint requests to: Mohammad Kouhi, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, P.O. Box 14665-678, Tehran, Iran. E-mail: m_kouhi2005@yahoo.com

Abstract

An anomalously strong increase of nuclear fusion gains for laser driven compression and thermal ignition of hydrogen-boron11 has been discovered from computations by using the latest results of Newins and Swain about details of a resonance maximum of the astrophysical S-function at 148 keV for the reaction cross-sections. Extensive computations based on volume ignition showed some usual improvements of the fusion gains. However, for a very narrow range of parameters, the increase of the gain was found to be higher by more than a factor 6. This is very unusual in all similar computations and is related to retrograde properties which were known for other parameter values. On top it is most important that the anomalous range is in the practically very interesting range for incorporation of laser pulse energies of few megajoules. The gains of up to 20 may be of interest for power generation in future by the high density fusion scheme.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Azizi, N., Hora, H., Miley, G.H., Malekynia, B., Ghoranneviss, M. & He, X. (2009). Threshold for laser driven block ignition for fusion of hydrogen boron. Laser Part. Beams 27, 201206.CrossRefGoogle Scholar
Badiei, S., Andersson, P.U. & Holmlid, L. (2010). Laser-driven nuclear fusion D + D in ultradense deuterium: MeV particles formed without ignition. Laser Part. Beams 28, 313317.CrossRefGoogle Scholar
Bobin, J.L. (1974). Nuclear fusion reactions in fronts propagating in solid DT. In Laser Interaction and Related Plasma Phenomena (Schwarz, H. and Hora, H., Eds.), Vol. 4B, 465494. New York: Plenum Press.CrossRefGoogle Scholar
Bosch, H.S. & Hale, G.M. (1992). Improved formulas for fusion cross-sections and thermal reactivities. Nucl. Fusion 32, 611.CrossRefGoogle Scholar
Chu, M.S. (1972). Thermonuclear reaction waves at high densities. Phys. Fluids 15, 412422.CrossRefGoogle Scholar
Clark, R.G., Hora, H., Ray, P.S. & Titterton, E. (1978). Evaluation of cross-sections of the 6Li(d,α)α reaction. Phys. Rev. C18, 11271132.Google Scholar
Davidson, J.M., Berg, H.L., Lowry, M.M., Dwarakanath, M.R., Sierk, A.J., Batay-Csorba, P. (1979). Low energy cross-sections for 11B(p, 3α). Nucl. Phys. A 315, 253.Google Scholar
Eliezer, S. & Hora, H. (1993). Direct driven laser fusion. In Nuclear Fusion by Inertial Confinement (Velarde, G., Martinez-Val, J. & Ronen, A., Eds.), 4372. Boca Raton: CRC Press.Google Scholar
Eliezer, S., Murakami, M. & Martinez-Val, J.M. (2007). Equation of state and optimum compression in inertial fusion energy. Laser Part. Beams 25, 585592.CrossRefGoogle Scholar
Gabor, D. (1933). Elektrostatische theorie des plasmas (Electrostatic theory of plasmas). Zeitschrift f. Phys. 84, 474508.Google Scholar
Gabor, D. (1952). Wave theory of plasmas. Proc. Roy. Soc. London A 213, 7286.Google Scholar
Glenzer, S.H., Macgowan, B.J., Michel, P., Meezan, N.B., Suter, L.J., Dixit, S.N.J., Kline, L., Kyrala, G.A., Bradley, D.K., Callahan, D.A., Dewald, E.L., Divol, L., Dzenitis, E., Edwards, M.J., Hamza, M.J.A., Haynam, C.A., Hinkel, D.E., Kalanda, D.L., Kilkenny, J.D., Landen, O.L., Lindl, J.D., Lepape, S.J., Moody, J.D., Nikroo Parham, A.T., Schneider, M.B., Town, R.P.J., Wegner, P., Widmann, K.P., Whitman, P., Young, B.K.F., Van Wontherghem, B., Atherton, L.J. & Moses, E.I. (2010). Symmetric inertial confinement fusion implosions at ultra-high laser energies. Sci. 327, 12081211.Google ScholarPubMed
Holmlid, L., Hora, H., Miley, G. & Yang, X. (2009). Ultrahigh-density deuterium of Rydberg matter clusters for confinement fusion targets. Laser Part. Beams 27, 529532.CrossRefGoogle Scholar
Hora, H., Castillo, R., Clark, R.G., Kane, E.L., Lawrence, V.F., Miller, R.D.C., Nicholson-Florence, M.F., Movak, M.M., Ray, P.S., Shepanski, J.R. & Tsivinsky, A.I. (1979). Calculations of inertial confinement fusion gains using a collective model for reheat, bemsstrahlung and fuel depletion for high efficient electrodynamic compressions, Proc. 7 thIAEA Conf. Plasma Physics and Thermonuclear Fusion, pp. 2330. Vienna: IAEA.Google Scholar
Hora, H. & Ray, P.S. (1978). Increased nuclear fusion yields of inertially confined DT plasma due to reheat. Zeitschrift f. Naturforschung A33, 890894.CrossRefGoogle Scholar
Hora, H. (1991). Physics of Laser Driven Plasmas. New York: John Wiley.Google Scholar
Hora, H., Badziak, J., Boody, F., Höpfl, R., Jungwirth, K., Kralikova, B., Kraska, J., Laska, L., Parys, P., Perina, P., Pfeifer, K. & Rohlena, J. (2002). Effects of picosecond and ns laser pulses for giant ion source. Opt. Commun. 207, 333338.CrossRefGoogle Scholar
Hora, H. & Miley, G.H. (2005). Introductory remarks to the Edward Teller Lectures. In Edward Teller Lectures: Laser and Inertial Fusion Energy (Hora, H. & Miley, G.H., Eds.), pp. 323. London: Imperial College Press.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Hora, H., Badziak, J., Read, M.N., Li, YU-TONG, Liang, Tian-Jiao, Liu, HONG, Sheng, Zheng-Ming, Zhang, JIE, Osman, F., Miley, G.H., Zhang, Weiyan, He, Xianto, Peng, Hansheng, Glowacz, S., Jablonski, S., Wolowski, J., Skladanowski, Z., Jungwirth, K., Rohlena, K. & Ullschmied, J. (2007). Fast ignition by laser driven particle beams of very high intensity Phys. Plasmas 14, 072701-1/072701-7.CrossRefGoogle Scholar
Hora, H. (2009). Laser fusion with nonlinear force driven plasma blocks: Thresholds and dielectric effects. Laser Part. Beams 27, 207222.CrossRefGoogle Scholar
Hora, H., Miley, G.H., Ghoranneviss, M., Malekynia, B. & Azizi, N. (2009). Laser-optical path to nuclear energy without radioactivity: Fusion of hydrogen-boron by nonlinear force driven plasma blocks. Opt. Commun. 282, 41244126.CrossRefGoogle Scholar
Hora, H., Miley, G.H., Ghoranneviss, M., Malekynia, B., Azizi, N. & He, X.-T. (2010). Fusion energy without radioactivity: laser ignition of solid hydrogen-boron(11) fuel. Ener. Envir. Sci. 3, 479486.CrossRefGoogle Scholar
Hosseini-Motlagh, S.N., Mohamadi, R. & Shamsi, R. (2008). Calculation of ρR-parameter and energy gain for aneutronic fusion in degenerate p11B plasma. J. Fusion Ener. 27, 161168.CrossRefGoogle Scholar
Khoda-Bakhsh, R., Soltanian, A. & Aminat-Talab, A. (2007). Volume ignition of 3He pellets. Nucl. Instr. Meth. Phys. A 581, 839846.Google Scholar
Kirkpatrick, R.C. & Wheeler, J.A. (1981). Confirmation of volume ignition of inertial confinement fusion. Nucl. Fusion 21, 398.Google Scholar
Landau, L.D. & Lifshitz, E.M. (1987). Quantum Mechanics. Oxford: Pergamon.Google Scholar
Li, X.Z., Tian, J., Mei, M.Y. & Li, C.X. (2000). Sub-barrier fusion and selective resonant tunneling. Phys. Rev. C 61, 024610/1–024610/6.CrossRefGoogle Scholar
Li, X.Z., Liu, Bin, Chen, S.I., Wei, Q.M. & Hora, H. (2004). Fusion cross-sections in inertial fusion energy. Laser Part. Beams 22, 469477.Google Scholar
Li, Yuandi (2010). Nuclear power without radioactivity. In Highlights in Chemical Technology. London: Royal Chemical Society.Google Scholar
Lipson, A., Heuser, B.L., Castano, C., Miley, G.L., Lyakov, B. & Mitin, (2005) Transport and magnetic anomalies below 70 K in a hydrogen-cycled Pd foil with a thermally grown oxide. Phys. Rev. B 72, 212507, 16.Google Scholar
Malekynia, B., Hora, H., Azizi, N., Kouhi, M., Ghoranneviss, M., Miley, H.G. & He, X.T. (2010). Collective stopping power in laser driven fusion plasmas or block ignition. Laser Part. Beams 28, 39.Google Scholar
Martinez-Val, J.-M., Eliezer, S. & Piera, M. (1994). Volume ignition targets for heavy-ion ignition fusion. Laser Part. Beams 12, 681717.CrossRefGoogle Scholar
Miley, G.H., Towner, H. & Ivich, N. (1974). Fusion Cross-Sections and Reactivates. Report #C00–2218–17, Springfield: University of Illinois.Google Scholar
Miley, G.H., Yang, X., Hora, H., Flippo, K., Gaillard, S., Offermann, D. & Gautier, C. (2010). Advances in proposed D-cluster inertial confinement fusion target. J. Phys.: Confer. Series 244, 032036/1–4.Google Scholar
Moses, E., Miller, G.H. & Kauffman, R.L. (2006). The ICF status and plans in the United States. J. de Phys. IV 133, 916.Google Scholar
Moses, E. (2008). Ignition on the National Ignition Facility. J. Phys.: Confer. Series 112, 12003/1–4.Google Scholar
Nevins, W.M. & Swain, R. (2000). The thermonuclear fusion rate coefficient for p-11B reactions. Nucl. Fusion 40, 865.CrossRefGoogle Scholar
Park, H.-S. & Remington, B. (2010). Review of experimental, high energy density facilities and capabilities. https://octopus.caltech.edu/local/hedla2010/bellan/Program-sort-invited-abstracts/1A1.1%20Park-HEDLA2010.pdfGoogle Scholar
Sadighi-Bonabi, R., Yazdani, E., Cang, Y. & Hora, H. (2010). Dielectric magnifying of plasma blocks by nonlinear force acceleration and with delayed electron heating. Phys. Plasmas 17, 113108/1–5.CrossRefGoogle Scholar
Sauerbrey, R. (1996). Acceleration of femtosecond laser produced plasmas. Phys. Plasmas 3, 47124716.Google Scholar
Scheffel, C., Stening, R.J., Hora, H., Höpfl, R., Martinez-Val, J.-M., Eliezer, S., Kasotakis, G., Piera, M. & Sarris, E. (1997). Analysis of the retrograde hydrogen boron fusion gains at inertial confinement fusion with volume ignition. Laser Part. Beams 15, 565574.Google Scholar
Stening, R.J., Khoda-Bakhsh, R., Pieruschka, P., Kasotakis, G., Kuhn, E., Miley, G.H. & Hora, H. (1992). Laser Interaction and Related Plasma Phenomena (Miley, G.H. & Hora, H., Eds.), Vol. 10, p. 347. New York: Plenum Press.CrossRefGoogle Scholar
Weaver, T., Zimmerman, G. & Wood, L. (1973). Exotic CTR fuel: Non-thermal effects and laser fusion application. Report #UCRL-74938. Livermore, CA: Lawrence Livermore Laboratory.Google Scholar
White, R.B. & Chen, F.F. (1974). Amplification and absorption of electromagnetic waves in overdense plasmas. Plasma Phys. 16, 565.CrossRefGoogle Scholar
Yang, X., Miley, G.H., Flippo, K.A. & Hora, H. (2011). Energy enhancement for deuteron beam fast ignition of a pre-compressed inertial confinement fusion (ICF) target. Phys. Plasmas 18.Google Scholar