Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T13:03:33.724Z Has data issue: false hasContentIssue false

Novel Aster-like ZnO Nanowire Clusters for Nanocomposites

Published online by Cambridge University Press:  08 March 2011

Mikhail Ladanov
Affiliation:
Department of Electrical Engineering, University of South Florida, Tampa, FL, United States. Department of Mechanical Engineering, University of South Florida, Tampa, FL, United States. Nanotechnology Research and Education Center, University of South Florida, Tampa, FL, United States.
Manoj Ram
Affiliation:
Department of Mechanical Engineering, University of South Florida, Tampa, FL, United States. Nanotechnology Research and Education Center, University of South Florida, Tampa, FL, United States.
Ashok Kumar
Affiliation:
Department of Mechanical Engineering, University of South Florida, Tampa, FL, United States. Nanotechnology Research and Education Center, University of South Florida, Tampa, FL, United States.
Garrett Matthews
Affiliation:
Department of Physics, University of South Florida, Tampa, FL, United States.
Get access

Abstract

ZnO nanostructures have attracted a great deal of interest because of their biocompatibility and outstanding optical and piezoelectric properties. Their uses are widely varying, including incorporation in sensors, solar cells, and nanogenerators. Biological systems are yet another area of application of ZnO nanowires. Apart from their electrical and optical properties, ZnO nanostructures can be used for the mechanical reinforcement of existing biomimetic scaffolds such as collagen and/or other biodegradable polymers (poly(lactic acid), polyglycolide, poly(alkyene succinate)s or polyhydroxylalkanoates). In this work, we have demonstrated a cheap and comparatively facile hydrothermal growth method for the bulk production of ZnO nanostructures exhibiting an aster-like geometry. The novel nanostructures of ZnO can be used as reinforced material to biopolymers. The aster shape has presented an increased surface area, providing a means for enhancing the stabilization of the gels and\or polymers. With controllable growth of ZnO nanostructures this method allows the geometry which could be tuned for maximal coupling between the two phases of composite and increased mechanical strength.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Greene, L. E., Law, M., Goldberger, J., Kim, F., Johnson, J. C., Zhang, Y., Saykally, R. J. and Yang, P., Angew. Chem. Int. Ed. 42(26), 30313034 (2003).Google Scholar
2. Tang, Z. K., Wong, G. K. L., Yu, P., Kawasaki, M., Ohtomo, A., Koinuma, H. and Segawa, Y., Appl. Phys. Lett. 72(25), 32703270 (1998).Google Scholar
3. Liu, C. H., Zapien, J. A., Yao, Y., Meng, X. M., Lee, C. S., Fan, S. S., Lifshitz, Y. and Lee, S. T., Adv. Mater. (Weinheim, Ger.) 15(10), 838841 (2003).Google Scholar
Fan, Z., Wang, D., Chang, P.-C., Tseng, W.-Y. and Lu, J. G., Appl. Phys. Lett. 85(24), 59235923 (2004).Google Scholar
5. Wan, Q., Li, Q. H., Chen, Y. J., Wang, T. H., He, X. L., Li, J. P. and Lin, C. L., Appl. Phys. Lett. 84(18), 36543654 (2004).Google Scholar
WangWang, , Zhou, J., Song, , Liu, J., Xu, N. and Wang, Z. L., Nano Lett. 6(12), 27682772 (2006).Google Scholar
7. Lu, M.-P., Song, J., Lu, M.-Y., Chen, M.-T., Gao, Y., Chen, L.-J. and Wang, Z. L., Nano Lett. 9(3), 12231227 (2009).Google Scholar
8. Wang, X., Song, J., Liu, J. and Wang, Z. L., Science 316 (5821), 102-105 (2007).Google Scholar
9. Wang, Z. L. and Song, J., Science 312 (5771), 242-246 (2006).Google Scholar
10. Li, Z., Yang, R., Yu, M., Bai, F., Li, C. and Wang, Z. L., The Journal of Physical Chemistry C 112(51), 2011420117 (2008).Google Scholar
11. Zhou, J., Xu, N. S. and Wang, Z. L., Adv. Mater. (Weinheim, Ger.) 18(18), 24322435 (2006).Google Scholar
12. Chang, P.-C., Fan, Z., Wang, D., Tseng, W.-Y., Chiou, W.-A., Hong, J. and Lu, J. G., Chem. Mater. 16(24), 51335137 (2004).Google Scholar
13. Lee, W., Jeong, M.-C. and Myoung, J.-M., Acta Mater. 52(13), 39493957 (2004).Google Scholar
14. Park, W. I., Kim, D. H., Jung, S. W. and Yi, G.-C., Appl. Phys. Lett. 80(22), 42324232 (2002).Google Scholar
15. Zhang, Y., Russo, R. E. and Mao, S. S., Appl. Phys. Lett. 87(13), 133115133115 (2005).Google Scholar
16. Lyu, S. C., Zhang, Y., Lee, C. J., Ruh, H. and Lee, H. J., Chem. Mater. 15(17), 32943299 (2003).Google Scholar
17. Huang, M. H., Wu, Y., Feick, H., Tran, N., Weber, E. and Yang, P., Adv. Mater. (Weinheim, Ger.) 13(2), 113116 (2001).Google Scholar
18. Greene, L. E., Law, M., Tan, D. H., Montano, M., Goldberger, J., Somorjai, G. and Yang, P., Nano Lett. 5(7), 12311236 (2005).Google Scholar
19. Hsu, Y. F., Xi, Y. Y., Tam, K. H., Djurišić, A. B., Luo, J., Ling, C. C., Cheung, C. K., Ng, A. M. C., Chan, W. K., Deng, X., Beling, C. D., Fung, S., Cheah, K. W., Fong, P. W. K. and Surya, C. C., Adv. Funct. Mater. 18(7), 10201030 (2008).Google Scholar