Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T10:56:33.801Z Has data issue: false hasContentIssue false

Ultrafast Charge Separation at a Single-walled Carbon Nanotube – Polymer Interface

Published online by Cambridge University Press:  02 March 2011

Samuel D. Stranks
Affiliation:
Department of Physics, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, U.K.
Christian Weisspfennig
Affiliation:
Department of Physics, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, U.K.
Patrick Parkinson
Affiliation:
Department of Physics, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, U.K.
Michael B. Johnston
Affiliation:
Department of Physics, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, U.K.
Laura M. Herz
Affiliation:
Department of Physics, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, U.K.
Robin J. Nicholas*
Affiliation:
Department of Physics, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, U.K.
Get access

Abstract

We report the observation of an ultrafast (~ 430 fs) charge transfer process at the interface between a single-walled carbon nanotube (SWNT) wrapped by a semi-conducting polymer, poly(3-hexylthiophene) (P3HT), creating free polarons on both materials. The addition of excess P3HT as a surrounding network allows these free polarons to be long-lived at room temperature. Our results suggest that SWNT-P3HT blends incorporating only 1% fractions of SWNTs can achieve a charge separation efficiency comparable to a conventional 60:40 P3HT-fullerene blend, provided small-diameter tubes are embedded in an excess P3HT matrix.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tang, C. W., Appl. Phys. Lett. 48, 183 (1986).Google Scholar
2. Reich, S., Thomsen, C., and Maultzsch, J., “Carbon Nanotubes – Basic Concepts and Physical Properties”, 1st ed. (Wiley-VCH, 2004).Google Scholar
3. Nish, A., Hwang, J. Y., Doig, J., and Nicholas, R. J., Nat. Nanotechnol. 2, 640646 (2007).Google Scholar
4. Nish, A., Hwang, J. Y., Doig, J., and Nicholas, R. J., Nanotechnology 19, 095603 (2008).10.1088/0957-4484/19/9/095603Google Scholar
5. Hwang, J. Y., Nish, A., Doig, J., Douven, S., Chen, C.-W., Chen, L.-C., and Nicholas, R. J., J. Am. Chem. Soc., 130, 35433553 (2008).Google Scholar
6. Kymakis, E., Servati, P., Tzanetakis, P., Koudoumas, E., Kornilios, N., Rompogiannakis, I., Franghiadakis, Y., and Amaratunga, G. A., Nanotechnology, 18, 435702 (2007).Google Scholar
7. Arranz-Andres, J., and Blau, W. J., Carbon 46, 20672075 (2008).Google Scholar
8. Schuettfort, T., Nish, A., and Nicholas, R. J., Nano Lett., 9, 38713876 (2009).Google Scholar
9. Kanai, Y., and Grossman, J. C., Nano Lett., 8, 908912 (2008).Google Scholar
10. Schuettfort, T., Snaith, H., Nish, A., and Nicholas, R., Nanotechnology, 21, 025201 (2010).Google Scholar
11. Stranks, S. D., Weisspfennig, C., Parkinson, P., Johnston, M. B., Herz, L. M., and Nicholas, R. J., Nano Lett., In Press.Google Scholar
12. Chang, M. H., Hoffmann, M., Anderson, H. L., and Herz, L. M., J. Am. Chem. Soc., 130, 1017110178 (2008).10.1021/ja711222cGoogle Scholar
13. Jiang, X. M., Österbacka, R., An, C. P., and Vardeny, Z. V., Synth. Met. 137, 14651468 (2003).Google Scholar
14. Clark, J., Silva, C., Friend, R. H., and Spano, F. C., Phys. Rev. Lett., 98, 206406 (2007).10.1103/PhysRevLett.98.206406Google Scholar
15. Parkinson, P., Müller, C., Stingelin, N., Johnston, M. B., and Herz, L. M., J. Phys. Chem. Lett. 1, 27882792 (2010).10.1021/jz101026gGoogle Scholar
16. Trotzky, S., Hoyer, T., Tuszynski, W., Lienau, C., and Parisi, J., J. Phys. D-Appl. Phys., 42, 055105 (2009).Google Scholar
17. Geng, J. X., Kong, B. S., Yang, S. B., Youn, S. C., Park, S., Joo, T., and Jung, H. T., Adv. Funct. Mater., 18, 26592665 (2008).Google Scholar
18. Chen, F. M., Zhang, W. J., Jia, M. L., Wei, L., Fan, X. F., Kuo, J. L., Chen, Y., Chanpark, M. B., Xia, A. D., Li, L. J., J. Phys. Chem. C, 113, 1494614952 (2009).Google Scholar
19. Österbacka, R., An, C. P., Jiang, X. M., Vardeny, Z. V., Science 287, 839842 (2000).Google Scholar
20. Savenije, T. J., Kroeze, J. E., Yang, X. N., and Loos, J., Adv. Funct. Mater. 15, 12601266 (2005).Google Scholar
21. Hwang, I. W., Moses, D., and Heeger, A. J., J. Phys. Chem. C, 112, 4350. (2008).10.1021/jp075565xGoogle Scholar
22. Korovyanko, O. J., Österbacka, R., Jiang, X. M., Vardeny, Z. V., and Janssen, R. A., J. Phys. Rev. B 64, 235122 (2001).10.1103/PhysRevB.64.235122Google Scholar
23. Dicker, G., Siebbeles, L. D. A., and Warman, J. M., Phys. Rev. B 70, 045203 (2004).Google Scholar
24. Guo, J. M., Ohkita, H., Benten, H., and Ito, S., J. Am. Chem. Soc. 131, 1686916880 (2009).10.1021/ja906621aGoogle Scholar
25. Pedersen, T. G., Phys. Rev. B 67, 073401 (2003).10.1103/PhysRevB.67.073401Google Scholar
26. Morteani, A. C., Sreearunothai, P., Herz, L. M., Friend, R. H., Silva, C., Phys. Rev. Lett. 92, 247402 (2004).10.1103/PhysRevLett.92.247402Google Scholar