Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-20T01:32:44.041Z Has data issue: false hasContentIssue false

A Novel Method for Sorting Single Wall Carbon Nanotubes by Length

Published online by Cambridge University Press:  02 March 2011

Shigekazu Ohmori
Affiliation:
Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan.
Takeshi Saito
Affiliation:
Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan.
Bikau Shukla
Affiliation:
Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan.
Motoo Yumura
Affiliation:
Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan.
Sumio Iijima
Affiliation:
Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan.
Get access

Abstract

We report a novel system for sorting single wall carbon nanotubes (SWCNTs) by length via cross-flow filtration with three membrane filters of different pore sizes, 1.0, 0.45, and 0.2 μm. SWCNTs dispersed in water with the help of polymer type detergents, such as sodium carboxymethylcellulose (CMC) and polyoxyethylene stearyl ether (Brij 700), were successfully fractionated into four samples, and the atomic force microscopy (AFM) observation of those samples confirmed that their length distribution peaks are within the expected ranges from pore sizes of used filters. However, the result of the similar filtration process using a non-polymer detergent, sodium dodecylbenzenesulfonate (SDBS), showed no pronounced correlation between the length distribution of SWCNTs and the pore size. The observed difference in the sorting phenomena caused by the detergent type suggests that the permeation property depends on the complex structure resulting from the dispersed SWCNTs and detergent molecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tanaka, K., Okahara, K., Okada, M., Yamabe, Y., Chem. Phys. Lett., 191, 469472 (1992).Google Scholar
2. Saito, R., Fujita, M., Dresselhaus, G., Dresselhaus, M. S., Phys. Rev. B 46, 18041811 (1992).Google Scholar
3. Hamada, N., Sawada, S., Oshiyama, A., Phys. Rev. Lett. 68, 15791581 (1992).Google Scholar
4. Fagan, J. A., Simpson, J. R., Bauer, B. J., De Paoli Lacerda, S. H., Becker, M. L., Chun, J., Migler, K. B., Hight Walker, A. R., Hobbie, E. K., J. Am. Chem. Soc. 129, 1060710612 (2007).Google Scholar
5. Rajan, A., Strano, M. S., Heller, D. A., Hertel, T., Schulten, K., J. Phys. Chem. B 112, 62116213 (2008).Google Scholar
6. Sun, X., Zaric, S., Daranciang, D., Welsher, K., Lu, Y., Li, X., Dai, H., J. Am. Chem. Soc. 130, 65516555 (2008).Google Scholar
7. Nakanishi, T., Ando, T., J. Phys Soc. Jpn. 78, 114708 (2009).Google Scholar
8. Pike, G. E., Seager, C. H., Phys. Rev. B 10, 14211434 (1974).10.1103/PhysRevB.10.1421Google Scholar
9. Ishida, M., Nihey, F., Appl. Phys Lett. 92, 163507 (2008).Google Scholar
10. Asada, Y., Miyata, Y., Shiozawa, K., Ohno, Y., Kitaura, R., Mizutani, T., Shinohara, H., J. Phys. Chem. C (in press).Google Scholar
11. Duesberg, G. S., Muster, J., Krstic, V., Burghard, M., Roth, S., Appl. Phys. A 67, 117119 (1998).Google Scholar
12. Zheng, M., Jagota, A., Semke, E. D., Diner, B. A., Mclean, ROBERT S. , R. S., Lustig, S. R., Richardson, R. E., Tassi, N. G., Nat. Mater. 2, 338342 (2003).10.1038/nmat877Google Scholar
13. Huang, X., Mclean, R. S., Zheng, M., Anal. Chem. 77, 62256228 (2005).10.1021/ac0508954Google Scholar
14. Fagan, J. A., Becker, M. L., Chun, J., Nie, P., Bauer, B. J., Simpson, J. R., Hight-Walker, A., Hobbie, E. K., Langmuir 24, 1388013889 (2008).10.1021/la801388aGoogle Scholar
15. Fagan, J. A., Becker, M. L., Chun, J., Hobbie, E. K., Adv. Mater. 20, 16091613 (2008).Google Scholar
16. Doorn, S. K., Fields, R. E., Hu, H., Hamon, M. A., Haddon, R. C., Selegue, J. P., Majidi, V., J. Am. Chem. Soc. 124, 31693174 (2002).Google Scholar
17. Daniel, A., Heller, D. A., Mayrhofer, R. M., Baik, S., Grinkova, Y. V., Usrey, M. L., Strano, M. S., J. Am. Chem. Soc. 126, 1456714573 (2004).Google Scholar
18. Chen, B., Selegue, J. P., Anal. Chem. 74, 47744780 (2002).10.1021/ac020111bGoogle Scholar
19. Chun, J., Fagan, J. A., Hobbie, E. K., Bauer, B. J., Anal. Chem. 80, 25142523 (2008).10.1021/ac7023624Google Scholar
20. Saito, T., Ohshima, S., Okazaki, T., Ohmori, S., Yumura, M., Iijima, S., J. Nanosci. Nanotechnol. 8, 61536157 (2008).Google Scholar
21. Jorio, A., Saito, R., Hafner, J. H., Lieber, C. M., Hunter, M., McClure, T., Dresselhaus, G., Dresselhaus, M. S., Phys. Rev. Lett. 86, 11181121 (2001).10.1103/PhysRevLett.86.1118Google Scholar
22. Saito, T., Ohmori, S., Shukla, B., Yumura, M., Iijima, S., Appl. Phys. Exp. 2, 095006 (2009).10.1143/APEX.2.095006Google Scholar
23. Abatemarco, T., Stickel, J., Belfort, J., Frank, B. P., Ajayan, P. M., Belfort, G., J. Phys. Chem. B 103, 35343538 (1999).10.1021/jp984020nGoogle Scholar
24. Sommer, C. and Pedersen, J. S., Langmuir 21, 21372149 (2005).Google Scholar