Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T12:45:39.976Z Has data issue: false hasContentIssue false

CVD Diamond Dislocations Observed by X-ray Topography, Birefrengence Image and Cathodoluminesence mapping

Published online by Cambridge University Press:  02 March 2011

Yukako Kato
Affiliation:
Diamond Research Laboratory, Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
Hitoshi Umezawa
Affiliation:
Diamond Research Laboratory, Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
Hirotaka Yamaguchi
Affiliation:
Nanoelectronics Research Institute, Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
Tokuyuki Teraji
Affiliation:
National Institute for Material Science, Tsukuba 305-0047, Japan
Shin-ichi Shikata
Affiliation:
Diamond Research Laboratory, Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
Get access

Abstract

Semiconductor epitaxial CVD single crystal diamond is considered a potential material for power devices because of its unique characteristics. In the discussion on the relationship between crystal quality and device performance, the atomic purity and defect concentration have been considered; however, the information on the local stress-strain distribution in a single crystal is not sufficient. In this paper, the dislocation analysis is shown for the suggestion of the established standard dislocation analysis method. The aggregation of mixed dislocations is observed by the analysis by using the birefringence image, cathodoluminescence image and x-ray topography.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baliga, B. J., J.Appl.Phys., 53, 3, 1759 (1982)Google Scholar
2. Ikeda, K., Umezawa, H. and Shikata, S., Diamond Relat. Mater. 17, 4-5 (2008) pp. 809812 10.1016/j.diamond.2007.12.066Google Scholar
3. Umezawa, H., Mokuno, Y., Yamada, H., Chayahara, A. and Shikata, S., Diamond Relat. Mater. 19, 2-3 (2009) pp. 208212 Google Scholar
4. Kodama, K., Funaki, T., Umezawa, H. and Shikata, S., IEICE Electronics Express 7, 17 (2010) pp. 12461251 Google Scholar
5. Lang, A. R., J. Crystal Growth 42 (1977) pp. 625631 Google Scholar
6. Bauer, T., Schreck, M., Härtwig, J., Liu, X. H., Wong, S. P., and Stritzker, B., phys. stat. sol. 203, 12 (2006) pp. 30563062 Google Scholar
7. Tatsumi, N., Ikeda, K., Umezawa, H. and Shikata, S., SEI Technical review 68, (2009) pp. 5461 Google Scholar
8. Neudeck, P. G., NASA/TM (1999) 209647 Google Scholar
9. Read, W. T.: “Dislocations in Crystal” (McGraw-Hill Book Co., Inc., 1953)Google Scholar
10. Pinto, H. and Jones, R., J. Phys.: Condens. Matter 21, 36, 364220 (2009)Google Scholar
11. Ming, N.–B. and Ge, C.–Z., J. Cryst. Growth 99, (1990) pp. 13091314 Google Scholar
12. Dean, P. J., Phys. Rev. 139, A588A602 (1965)10.1103/PhysRev.139.A588Google Scholar
13. Takeuchi, D., Watanabe, H., Yamanaka, S., Okushi, H., Sawada, H., Ichinose, H., Sekiguchi, T. and Kajimura, K., Phys. Rev. B 63, 245328 (2001)Google Scholar
14. Wang, C., Irie, M., Kimura, K., Teraji, T. and Ito, T., Jpn. J. Appl. Phys. 40 (2001) pp. 41454148 10.1143/JJAP.40.4145Google Scholar
15. Kanaya, K. and Okayama, S., J. Phys. D: Appl. Phys. 5 (1972), pp.4358 10.1088/0022-3727/5/1/308Google Scholar