Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-20T01:09:11.164Z Has data issue: false hasContentIssue false

Radiation Defect-Induced Lattice Contraction of InP

Published online by Cambridge University Press:  28 February 2011

C. R. Wie
Affiliation:
State University of New York at Buffalo, Dept. of Electrical and Computer Engineering, Amherst, N. Y. 14260
T. Jones
Affiliation:
California Institute of Technology Div. of Physics, Mathematics and Astronomy and, Engineering and Applied Sciences, Pasadena, CA 91125
T. A. Tombrello
Affiliation:
California Institute of Technology Div. of Physics, Mathematics and Astronomy and, Engineering and Applied Sciences, Pasadena, CA 91125
T. Vreeland Jr
Affiliation:
California Institute of Technology Div. of Physics, Mathematics and Astronomy and, Engineering and Applied Sciences, Pasadena, CA 91125
F. Xiong
Affiliation:
California Institute of Technology Div. of Physics, Mathematics and Astronomy and, Engineering and Applied Sciences, Pasadena, CA 91125
Z. Zhu
Affiliation:
California Institute of Technology Div. of Physics, Mathematics and Astronomy and, Engineering and Applied Sciences, Pasadena, CA 91125
G. Burns
Affiliation:
IBM Thomas Watson Research Center, Yorktown Heights, New York 10598
F. H. Dacol
Affiliation:
IBM Thomas Watson Research Center, Yorktown Heights, New York 10598
Get access

Abstract

We studied the lattice strain induced in the MeV ion bombarded InP crystals and the annealing behaviors of lattice strain, Raman line shift, and linewidth. The lattice spacing for the planes parallel to the surface decreases as a result of irradiation, and amounts to a strain of −0.061% for (100) face, −0.056% for (110) face, and −0.050% for (111) face for 15 MeV Cl bombarded samples to a dose of 1.25E15 ions/cm2. The negative lattice strain, Raman line shift, and line width completely recover at 450°C, and show a major recovery stage at 250°C – 350°C.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bachman, K. J., Ann. Rev. Matr. Sci. 11 441 (1981)Google Scholar
2. Kennedy, T.A. and Wilsey, N.D., Appl. Phys. Lett. 44 1089 (1984)Google Scholar
3. Levinson, M., Temkin, H., and Bonner, W.A., J.Electr. Matr. 12 423 (1983)Google Scholar
4. Levinson, M., Benton, J.L., Temkin, H., and Kimmerling, L.C., Appl. Phys. Lett. 40 990 (1982)Google Scholar
5. Sibille, A. and Bourgoin, J.C., Appl. Phys. Lett. 41 956 (1982)Google Scholar
6. Ando, K., Yamaguchi, M., and Uemura, C., J. Appl. Phys. 55 4444 (1984)Google Scholar
7. Yamaguchi, M., Ando, K., and Uemura, C., J. Appl. Phys. 55 3160 (1984)Google Scholar
8. Brailovskii, E. Yu., Karapetyan, F.K., Megela, I.G., and Tartachnik, V.P., Phys. Stat. Sol. (a) 71 563 (1982)Google Scholar
9. Macrander, A.T., Schwartz, B., and Focht, M.W., J. Appl. Phys. 55 3595 (1984)Google Scholar
10. Downey, P.M. and Tell, B., J. Appl. Phys. 56 2672 (1984)Google Scholar
11. Koyama, J., Shirafuji, J., and Inuishi, Y., Electron. Lett. 19 609 (1983)Google Scholar
12. Dietsich, H.B. in Advanced Applications of Ion Implantation, SPIE Proc. 530 30 (1985)CrossRefGoogle Scholar
13. Payne, R.S., Grant, W.N., and Bertram, W.J., IEDM, Washington, 1980, p. 248.Google Scholar
14. Wie, C.R., Tombrello, T.A., and Vreeland, T. Jr., Phys. Rev. B33 4083 (1986)Google Scholar
15. Wie, C.R., Vreeland, T. Jr., and Tombrello, T.A., Nucl. Instr. Meth. B16 44 (1986)Google Scholar
16. Wie, C.R., Presented at the 9th Conf. on the Appl. of Accelerators in Industry and Research, Denton, Texas, Nov. 1986.Google Scholar
17. Wie, C.R., Tombrello, T.A., and Vreeland, T. Jr., J. Appl. Phys. 59 3743 (1986)CrossRefGoogle Scholar
18. Wie, C.R., Vreeland, T. Jr., and Tombrello, T.A., Matr. Res. Soc. Symp. Proc. 35 305 (1985)Google Scholar
19. Sugii, K., Koizumi, H., and Kubota, E., J. Electron. Matr. 12 701 (1983)CrossRefGoogle Scholar
20. Burns, G., Dacol, F.H., Wie, C.R., Burstein, E., and Cardona, M., Submitted to Mat. Res. Soc. Symp. 1986, Boston (this conference), and Bull. Am. Phys. Soc. 31 400 (1986)Google Scholar
21. Burns, G., Dacol, Fr.H., Wie, C.R., Burstein, E., and Cardona, M., to be published in Solid State Comm.Google Scholar
22. Lang, D.V., Logan, R.A., and Kimmerling, L.C., Phys. Rev. B15 4874 (1977)CrossRefGoogle Scholar
23. Piesbergen, U. in Semiconductors and Semimetals, Vol. 2, ed. by Willardson, R.K. and Beer, A.C. (Academic Press, NY 1966) p.49 Google Scholar
24. Woodhouse, J.D., Donnelly, J.P., Nitishin, P.M., Owens, E.B. and Ryan, J.L., Solid State Electron. 27 677 (1984)Google Scholar
25. Thommen, K., Rad. Eff. 2 201 (1970)Google Scholar
26. Lang, D.V., Kimmerling, L.C. and Leung, S.Y., J. Appl. Phys. 47 3587 (1976)Google Scholar
27. Spicer, W.B., Lindau, I., Skeath, P., Su, C.Y., and Chye, P., Phys. Rev. Lett. 44 420 (1980) and references thereinGoogle Scholar
28. Doýnnelly, J.P. and Leonberger, F.J., Solid State Electron. 20 183 (1977), and J.P. Donnelly and C.E. Hurwitz, Solid State Electron. 20 727 (1977)Google Scholar
29. See, for example, Donnelly, J.P., Nucl. Instr. Meth. B182/183 Part 2, 553 (1981)Google Scholar
30. Pons, D., Mircea, A. and Bourgoin, J., J. Appl. Phys. 51 4150 (1980)Google Scholar