Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T04:53:51.468Z Has data issue: false hasContentIssue false

Effects of Controlled Defects on the Vortex-Solid Melting Transition of Y-Ba-Cu-O Single Crystals

Published online by Cambridge University Press:  26 February 2011

W. Jiang
Affiliation:
Department of Physics, California Institute of Technology Pasadena, CA 91125
N. -C. Yeh
Affiliation:
Department of Physics, California Institute of Technology Pasadena, CA 91125
D. S. Reed
Affiliation:
Department of Physics, California Institute of Technology Pasadena, CA 91125
U. Kotlani
Affiliation:
Department of Physics, California Institute of Technology Pasadena, CA 91125
T. A. Tombrello
Affiliation:
Department of Physics, California Institute of Technology Pasadena, CA 91125
A. P. Rice
Affiliation:
Department of Physics, California Institute of Technology Pasadena, CA 91125
F. Holtzberg
Affiliation:
IBM Research Division, Thomas J. Watson Research Center Yorktown Heights, NY 10598
Get access

Abstract

We report systematic studies of the dc transport properties in proton-irradiated Y-Ba-Cu-O single crystals. We find that the onset of vortex dissipation in moderately irradiated samples is associated with the occurrence of a second-order vortex-solid melting transition. In addition, the decreasing zero-field transition temperature and increasing critical current density with the increasing defects reveal the effects of disorder on reducing the electron mean-free-path and on increasing the pinning density.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Civaie, L., Maxwick, A. D., McElfresh, M. W., Malozemoff, A. P., and Holtzberg, F.. Phys. Rev. Lett. 65, 1164 (1990).Google Scholar
[2] van Dover, R. B., Gyorgy, E. M., Schneemeyer, L. F., White, A. E., Glarum, S., Felder, R. J., and Waszczak, J. V.. Mat. Res. Soc. Symp. Proc, 169, 911 (1989).Google Scholar
[3] Yeh, N. -C., Jiang, W., Reed, D. S., Kriplani, U., and Holtzberg, F.. Submitted to Phys. Rev. Lett., (April, 1992); Mat. Res. Soc. Symp. Proc. (1992).Google Scholar
[4] Reed, D. S., Yeh, N.-C., Jiang, W., Kriplani, U., and Holtzberg, F.. Submitted to Phys. Rev. Lett., (April, 1992); Mat. Res. Soc. Symp. Proc. (1992).Google Scholar
[5] Yeh, N. -C., Reed, D. S., Jiang, W., Kriplani, U., Holtzberg, F., Gupta, A., Hunt, B. D., Vasquez, R. P., Foote, M. C., and Bajuk, L.. Phys. Rev. B45, 5654 (1992).Google Scholar
[6] Jiang, W., Yeh, N. -C., Reed, D. S., Kriplani, U., Holtzberg, F., and Tombrello, T. A.. in preparation.Google Scholar
[7] Yeh, N. -C., Jiang, W., Reed, D. S., Kriplani, U., Holtzberg, F., and Kussumal, A.. Phys. Rev. B45, 5710 (1992).Google Scholar
[8] Fisher, D. S., Fisher, M. P. A., and Huse, D.. Phys. Rev. B43, 130 (1991).Google Scholar
[9] Welp, U., Kwok, W. K., Crabtree, G. W., Vandervoort, K. G., and Liu, J. Z.. Phys. Rev. Lett. 62, 1908 (1989).Google Scholar