Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T13:20:07.524Z Has data issue: false hasContentIssue false

Properties of Al2O3 films prepared by argon ion assisted deposition

Published online by Cambridge University Press:  03 March 2011

Mansour S. Al-Robaee
Affiliation:
Instrumentation and Services Unit, Indian Institute of Science, Bangalore 560 012, India
Ghanashyam M. Krishna
Affiliation:
Instrumentation and Services Unit, Indian Institute of Science, Bangalore 560 012, India
G.N. Subanna
Affiliation:
Materials Research Center, Indian Institute of Science, Bangalore 560 012, India
Narasimha K. Rao
Affiliation:
Instrumentation and Services Unit, Indian Institute of Science, Bangalore 560 012, India
S. Mohan
Affiliation:
Instrumentation and Services Unit, Indian Institute of Science, Bangalore 560 012, India
Get access

Abstract

Aluminum oxide films have been prepared by ion assisted deposition using argon ions with energy in the range 300 to 1000 eV and current density in the range 50 to 220 μA/cm2. The influence of ion energy and current density on the optical and structural properties has been investigated. The refractive index, packing density, and extinction coefficient are found to be very sensitive to the ion beam parameters and substrate temperatures. The as-deposited films were found to be amorphous and could be transformed into crystalline phase on annealing. However, the crystalline phases were different in films prepared at ambient and elevated substrate temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Sainty, W. G., Netterfield, R. P., and Martin, P. J., Appl. Opt. 23, 1116 (1984).CrossRefGoogle Scholar
2Netterfield, R. P., Muller, K. H., McKenzie, D. R., Goonan, M. J., and Martin, P. J., J. Appl. Phys. 63, 760 (1988).CrossRefGoogle Scholar
3Williams, F. L., Jacobson, R. D., McNeil, J. R., Exarhos, G. J., and McNally, J. J., J. Vac. Sci. Technol. A 6, 2020 (1988).CrossRefGoogle Scholar
4Williams, F. L., Reicher, D. W., Juang, C. B., and McNeil, J. R., J. Vac. Sci. Technol. A 7, 2286 (1989).CrossRefGoogle Scholar
5McNally, J. J., Al-Jumaily, G. A., McNeil, J. R., and Bendow, B., Appl. Opt. 25, 1973 (1986).CrossRefGoogle Scholar
6McNally, J. J., Jungling, K. C., Williams, F. L., and McNeil, J. R., J. Vac. Sci. Technol. A 5, 2145 (1987).CrossRefGoogle Scholar
7McNally, J. J., Al-Jumaily, G. A., and McNeil, J. R., J. Vac. Sci. Technol. A 4, 437 (1987).CrossRefGoogle Scholar
8Binh, L. N., Netterfield, R. P., and Martin, P. J., Appl. Surf. Sci. 22/23, 656 (1985).CrossRefGoogle Scholar
9Bhattacharya, R. S., Rai, A. K., and McCormick, A. W., Surf. Coatings Technol. 46, 155 (1991).CrossRefGoogle Scholar
10Targove, J. D., Lehan, J. P., Lingg, L. J., Macleod, H. A., Leavitt, J. A., and Mclntyre, L. C. Jr., Appl. Opt. 26, 3733 (1987).CrossRefGoogle Scholar
11Martin, P. J., Netterfield, R. P., Sainty, W. G., Clark, G. J., Lanford, W. A., and Sie, S. H., Appl. Phys. Lett. 43, 711 (1983).CrossRefGoogle Scholar
12Martin, P. J., Netterfield, R. P., and Sainty, W. G., J. Appl. Phys. 55, 235 (1984).CrossRefGoogle Scholar
13Martin, P. J. and Netterfield, R. P., in Handbook of Ion Beam Technology, edited by Cuomo, J. J., Rossnagel, S. M., and Kaufman, H. R. (Noyes Publications, Park Ridge, NJ, 1989).Google Scholar
14Gibson, U. J., in Physics of Thin Films, edited by Francombe, M. H. (Academic Press, New York, 1987), Vol. 13, p. 109.Google Scholar
15Al-Robaee, M. S., Subanna, G. N., Narasimha Rao, K., and Mohan, S., Vacuum (in press).Google Scholar
16Al-Robaee, M. S., Ghanashyam Krishna, M., Narasimha Rao, K., and Mohan, S., J. Vac. Sci. Technol. A 6, 3048 (1991).CrossRefGoogle Scholar
17Al-Robaee, M. S., Narasimha Rao, K., and Mohan, S., J. Appl. Phys. 71, 2380 (1992).CrossRefGoogle Scholar
18Al-Robaee, M. S., Shivalingappa, L., Narasimha Rao, K., and Mohan, S., Thin Solid Films 221, 214 (1992).CrossRefGoogle Scholar
19Targove, J. D., Ph.D. Thesis, University of Arizona, Tucson, AZ (1987).Google Scholar
20McNally, J.J., Ph.D. Thesis, University of New Mexico, Albu-querque, NM (1986).Google Scholar
21Muller, K. H., in Handbook of Ion Beam Technology, edited by Cuomo, J. J., Rossnagel, S. M., and Kaufman, H. R. (Noyes Publications, Park Ridge, NJ, 1989), p. 241.Google Scholar
22Winters, H. F. and Sigmund, P., J. Appl. Phys. 45, 4760 (1974).CrossRefGoogle Scholar
23Murno, P. C. and Thompson, H. W. Jr., J. Electrochem. Soc. 121, 127 (1975).Google Scholar
24Kubler, W., Thin Solid Films 199, 247 (1991).CrossRefGoogle Scholar
25Pawlewicz, W. T., Hays, D. D., and Martin, P. M., Thin Solid Films 73, 169 (1980).CrossRefGoogle Scholar
26Chou, T. C., Adamson, D., Mardinly, J., and Nieh, T. G., Thin Solid Films 205, 131 (1991).CrossRefGoogle Scholar