Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T10:44:13.603Z Has data issue: false hasContentIssue false

Preparation, characterization, and sinterability of well-defined silica/yttria powders

Published online by Cambridge University Press:  03 March 2011

Herbert Giesche
Affiliation:
Center for Advanced Materials Processing, Clarkson University, Box 5814, Potsdam, New York 13699-5814
Egon Matijević
Affiliation:
Center for Advanced Materials Processing, Clarkson University, Box 5814, Potsdam, New York 13699-5814
Get access

Abstract

Dispersions of uniform submicron spherical particles consisting of silica cores and yttria coatings, or vice versa, were prepared by a precipitation technique. The overall size of the particles and the thickness of the shells could be varied over a wide range. Such powders were used to form green bodies by sedimentation, centrifugation, or pressure filtration, and the density and the pore size distribution of the resulting solids were evaluated. The green bodies were sintered and the changes in density, phases, and microstructure were followed with temperature. In general, the coated powders exhibited enhanced densification. On processing composite solids at temperatures <1000 °C, the formation of Y2Si2O7 took place, which caused a pronounced shrinkage of the samples. Powders of coated particles having the same silica/yttria ratios sintered at lower temperatures when the shell was composed of silica rather than of yttria. When either silica or yttria were in molar excess in the coated particles, the sintered products had a mixed composition of Y2Si2O7 and the component in excess. By terminating the sintering process before the grain growth started, the solids displayed a well-defined microstructure with a uniform distribution of areas of one phase in the matrix of the matter in excess. This property was mainly due to the uniformity of initial powders in terms of the particle size and the coating.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Aiken, B., Hsu, W. P., and Matijević, E., J. Mater. Sci. 25, 1886 (1990).CrossRefGoogle Scholar
2Ishitsuka, M., Sato, T., Endo, T., and Shimada, M., J. Am. Ceram. Soc. 70, C342 (1987).Google Scholar
3Duh, J-G., Dai, H-T., and Chiou, B-S., J. Am. Ceram. Soc. 71, 813 (1988).CrossRefGoogle Scholar
4Gopalakrishnan, R., Kosmac, T., Krasevec, V., and Komac, M., in Sintering '85, edited by Kuczynski, G. C., Uskoković, D. P., Palmour, H. III, and Ristic, M. M. (Plenum Press, New York, 1985), pp. 281285.Google Scholar
5Slamovich, E. B. and Lange, F. F., in Better Ceramics Through Chemistry III, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, 1988), pp. 257262.Google Scholar
6Mali, T-I., Mazdiyasni, K. S., and Ruh, R., J. Am. Ceram. Soc. 62, 12 (1979).Google Scholar
7Tsuge, A. and Nishida, K., Am. Ceram. Soc. Bull. 57, 424 (1978).Google Scholar
8Giachello, A., Martinengo, P. C., Tommasini, G., and Popper, P., Am. Ceram. Soc. Bull. 59, 1212 (1980).Google Scholar
9Hirosaki, N., Okada, A., and Matoba, K., J. Am. Ceram. Soc. 71, C144 (1988).CrossRefGoogle Scholar
10Lange, F. F., Singhal, S. C., and Kuznicki, R. C., J. Am. Ceram. Soc. 60, 249 (1977).CrossRefGoogle Scholar
11Sanders, W. A. and Mieskowski, D. M., Am. Ceram. Soc. Bull. 64, 304 (1985).Google Scholar
12Dinger, T. R., Rai, R. S., and Thomas, G., J. Am. Ceram. Soc. 71, 236 (1988).CrossRefGoogle Scholar
13Patel, J. K. and Thompson, D. P., Br. Ceram. Trans. J. 87, 70 (1988).Google Scholar
14Quackenbush, C. L. and Smith, J. T., Am. Ceram. Soc. Bull. 59, 533 (1980).Google Scholar
15Leskelä, M. and Jyrkäs, K., J. Am. Ceram. Soc. 70, C160 (1987).CrossRefGoogle Scholar
16Hyatt, M. J. and Day, D. E., J. Am. Ceram. Soc. 70, C283 (1987).CrossRefGoogle Scholar
17Ulrich, D. R., Chem. Eng. News 68, 28 (1990).CrossRefGoogle Scholar
18Sugimoto, T., Mater. Res. Bull. XIV, 23 (1989).CrossRefGoogle Scholar
19Matijević, E., in Ultrastructure Processing of Ceramics, Glasses, and Composites, edited by Hench, L. L. and Ulrich, D. R. (John Wiley and Sons, New York, 1984), pp. 334352.Google Scholar
20Matijević, E., in Advances in Ceramics, Ceramic Powder Science and Technology, edited by Sachs, D. M. (The American Ceramic Society, Westerville, OH, 1987), Vol. 21, pp. 423437.Google Scholar
21Matijević, E., in High Tech Ceramics, edited by Vincenzini, P. (Elsevier Science Publishers, Amsterdam, 1987), pp. 441458.Google Scholar
22Matijević, E., Ann. Rev. Mater. Sci. 15, 483 (1985); Chem. Mater. 5, 412 (1993).CrossRefGoogle Scholar
23Matijević, E., in Science of Ceramic Chemical Processing, edited by Hench, L. L. and Ulrich, D. R. (John Wiley and Sons, New York, 1986), pp. 463481.Google Scholar
24Partch, R. E., Nakamura, K., Wolfe, K. J., and Matijević, E., J. Colloid Interf. Sci. 105, 560 (1985).CrossRefGoogle Scholar
25Garino, T., J. Am. Ceram. Soc. 75, 514 (1992).CrossRefGoogle Scholar
26Kratohvil, S. and Matijević, E., Adv. Ceram. Mater. 2, 798 (1987).CrossRefGoogle Scholar
27Aiken, B. and Matijević, E., J. Colloid Interf. Sci. 126, 645 (1988).CrossRefGoogle Scholar
28Garg, A. and Matijević, E., Langmuir 4, 38 (1988).CrossRefGoogle Scholar
29Garg, A. and Matijević, E., J. Colloid Interf. Sci. 126, 243 (1988).CrossRefGoogle Scholar
30Kawahashi, N. and Matijević, E., J. Colloid Interf. Sci. 138, 534 (1990).CrossRefGoogle Scholar
31Kapolnek, D. and De Jonghe, L. C., J. Eur. Ceram. Soc. 7, 345 (1991).CrossRefGoogle Scholar
32Riedel, R., Kunesch, J., Passing, G., Kaysser, W., and Petzow, G., in Proc. Int. Conf. on Advanced Metal and Ceramic Matrix Composites, edited by Bhagat, R. B., Clauer, A. H., Kumar, P., and Kitler, A. M. (The Minerals, Metals and Materials Society, Warrendale, PA, 1990), pp. 579586.Google Scholar
33Passing, G., Riedel, R., and Petzow, G., J. Am. Ceram. Soc. 74, 642 (1991).CrossRefGoogle Scholar
34Riedel, R., Passing, G., and Petzow, G., in Ceramic Powder Processing, edited by Hausner, H., Messing, G. L., and Hirano, S., Proc. 2nd Int. Conf., Berchtesgarden, Germany, October 12–14, 1988 (Deutsche Keramische Gesellschaft, Koln, 1989), pp. 843852.Google Scholar
35Sacks, M. D., Bozkurt, N., and Scheiffele, G. W., J. Am. Ceram. Soc. 74, 2428 (1991).CrossRefGoogle Scholar
36Okamura, H., Barringer, E. A., and Brown, H. K., J. Am. Ceram. Soc. 69, C22 (1986).CrossRefGoogle Scholar
37Sacks, M. D. and Tseng, T-Y., J. Am. Ceram. Soc. 67, 526 (1984).CrossRefGoogle Scholar
38Sacks, M. D. and Tseng, T-Y., J. Am. Ceram. Soc. 67, 532 (1984).CrossRefGoogle Scholar
39Sacks, M. D. and Vora, S. D., J. Am. Ceram. Soc. 71, 245 (1988).CrossRefGoogle Scholar
40Shimohira, T., Makishima, A., Kotani, K., and Wakakuwa, M., in Proc. Int. Symp. of Factors in Densification and Sintering of Oxide and Non-Oxide Ceramics, edited by Somiya, S. and Saito, S. (Tokyo Institute of Technology, Tokyo, 1978), pp. 119127.Google Scholar
41Johnson, D. W. Jr., Rabinovich, E. M., MacChesney, J. B., and Vogel, E. M., J. Am. Ceram. Soc. 66, 688 (1983).CrossRefGoogle Scholar
42Giesche, H. and Unger, K. K., in Ceramic Powder Processing Science, edited by Hausner, H. and Messing, G. L. (Deutsche Kermische Gesellschaft, Koln, 1989), pp. 755764.Google Scholar
43Aiken, B., Hsu, W. P., and Matijević, E., J. Am. Ceram. Soc. 71, 845 (1988).CrossRefGoogle Scholar
44Her, Y-S., Matijević, E., and Wilcox, W. R., Powder Technol. 61, 173 (1990).CrossRefGoogle Scholar
45Her, Y-S., Matijević, E., and Wilcox, W. R., J. Mater. Res. 7, 2269 (1992).CrossRefGoogle Scholar
46Her, Y-S., Matijević, E., Wilcox, W. R., Bailey, O. G., and Fischman, G., J. Mater. Sci. Lett. 11, 1629 (1992).CrossRefGoogle Scholar
47Sordelet, D. and Akinc, M., J. Colloid Interf. Sci. 122, 47 (1988).CrossRefGoogle Scholar
48Sordelet, D. J. and Akinc, M., J. Am. Ceram. Soc. 71, 1148 (1988).CrossRefGoogle Scholar
49Ribot, F., Sanchez, C., and Livage, J., in Better Ceramics Through Chemistry III, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Syrnp. Proc. 121, Pittsburgh, PA, 1988), pp. 139144.Google Scholar
50Rasmussen, M. D., Akinc, M., and Hunter, O., Jr., Ceram. Int. 11, 51 (1985).CrossRefGoogle Scholar
51Dogan, F., Roosen, A., and Hausner, H., in Advances in Ceramics, Ceramic Powder Science edited by Messing, G. L., Mazdiyasni, K. S., McCauley, J. W., and Haber, R. A. (The American Ceramic Society, Westerville, OH, 1987), Vol. 21, pp. 681689.Google Scholar
52Ciftcioglu, M., Akinc, M., and Burkhart, L., J. Am. Ceram. Soc. 70, C329 (1987).CrossRefGoogle Scholar
53Ciftcioglu, M., Smith, D. M., and Ross, S. B., Powder Technol. 55, 193 (1988).CrossRefGoogle Scholar
54Stöber, W., Fink, A., and Bohn, E., J. Colloid Interf. Sci. 26, 62 (1968).CrossRefGoogle Scholar
55Unger, K. K., Giesche, H., and Kinkel, J. N., German Patents 3534143 Al (25.09.1985), 3616133 Al (14.05.1986).Google Scholar
56Giesche, H., Ph.D. Thesis, Mainz, Germany (1987).Google Scholar
57Spurr, A. R., J. Ultrastructure Res. 26, 31 (1969).CrossRefGoogle Scholar
58Washburn, E. W., in Proc. Natl. Acad. Sci., USA 7, 115 (1921).Google Scholar
59van Helden, A. K. and Vrij, A., J. Colloid Interf. Sci. 76, 418 (1980).CrossRefGoogle Scholar
60van Helden, A. K., Jansen, J. W., and Vrij, A., J. Colloid Interf. Sci. 81, 354 (1981).CrossRefGoogle Scholar
61Toropov, N. A., in Trans. Int. Ceram. Congr., 7th ed. (London, 1960), p. 438.Google Scholar
62Toropov, N. A. and Bondar, I. A., Izv. Akad Nauk SSSR, Otd. Khim. Nauk 4, 547 (1961).Google Scholar