Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-29T02:03:00.668Z Has data issue: false hasContentIssue false

On the elastic moduli of nanocrystalline Fe, Cu, Ni, and Cu–Ni alloys prepared by mechanical milling/alloying

Published online by Cambridge University Press:  03 March 2011

T.D. Shen
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907
C.C. Koch
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907
T.Y. Tsui
Affiliation:
Department of Materials Science, Rice University, Houston Texas 77251-1892
G.M. Pharr
Affiliation:
Department of Materials Science, Rice University, Houston Texas 77251-1892
Get access

Abstract

Young's moduli of nanocrystalline Fe, Cu, Ni, and Cu-Ni alloys prepared by mechanical milling/alloying have been measured by the nanoindentation technique. The results indicate that Young's moduli of nanocrystalline Cu, Ni, and Cu–Ni alloys with a grain size ranging from 17 to 26 nm are similar to those of the corresponding polycrystals. The dependence of Young's modulus of nanocrystalline Fe on grain size corresponds well to a theoretical prediction, which suggests that the change in the Young and shear moduli of nanocrystalline materials, free of porosity, with a grain size larger than about 4 nm, should be very limited (<10%). It is likely that reported large decreases in the Young and shear moduli of nanocrystalline materials prepared by gas-condensation/vacuum consolidation result from a relatively large volume fraction of pores.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).Google Scholar
2Gleiter, H., in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, edited by Nastasi, M., Parkin, D.M., and Gleiter, H. (Kluwer Academic Publishers, Dordrecht/Boston/London, 1993), NATO ASI Series, Series E: Applied Sciences, Vol. 233, p. 1.Google Scholar
3Greer, A.L., ibid, p. 53.Google Scholar
4Aust, K.T., Erb, U., and Palumbo, G., ibid, p. 107.Google Scholar
5Embury, J. D. and Lahaie, D.J., ibid, p. 287.Google Scholar
6Siegel, R. W., ibid, p. 509.Google Scholar
7Gryaznov, V. G. and Trusov, L. I., Prog. Mater. Sci. 37, 289 (1993).Google Scholar
8Hughes, G. D., Smith, S. D., Pande, C. S., Johnson, H. R., and Armstrong, R. W., Scripta Metall. 20, 93 (1986).Google Scholar
9Jang, J.S.C. and Koch, C.C., Scripta Metall Mater. 24, 1599 (1990).Google Scholar
10Nieman, G.W., Weertman, J. R., and Siegel, R.W., Scripta Metall. Mater. 24, 145 (1990).Google Scholar
11Nieman, G.W., Weertman, J.R., and Siegel, R.W., J. Mater. Res. 6, 1012 (1991).Google Scholar
12Nieman, G.W., Weertman, J.R., and Siegel, R.W., in Clusters and Cluster-Assembled Materials, edited by Averback, R. R., Bernholc, J., and Nelson, D. L. (Mater. Res. Soc. Symp. Proc. 206, Pittsburgh, PA, 1991), p. 493.Google Scholar
13Wang, K.Y., Shen, T.D., Quan, M.X., and Wei, W.D., J. Mater. Sci. Lett. 12, 1818 (1993).Google Scholar
14Jang, J.S.C. and Koch, C.C., Scripta Metall. 22, 677 (1988).Google Scholar
15McMahon, G. and Erb, U., Microstruc. Sci. 17, 447 (1989).Google Scholar
16Cho, Y.S. and Koch, C.C., Mater. Sci. Eng. A 141, 139 (1991).Google Scholar
17Chang, H., Alstetter, C. J., and Averback, R. S., J. Mater. Res. 7, 2692 (1992).Google Scholar
18Kim, D. K. and Okazaki, K., Mater. Sci. Forum 88–90, 553 (1992).Google Scholar
19Tong, H.Y., Wang, J.T., Ding, B.Z., Jiang, H.G., and Lu, K., J. Non-Cryst. Solids 150, 444 (1992).Google Scholar
20Liu, X.D., Hu, Z.Q., and Ding, B.Z., NanoStru. Mater. 2, 545 (1993).Google Scholar
21Tsakalakos, T. and Hilliard, J.E., J. Appl. Phys. 54, 734 (1983).Google Scholar
22Baral, D., Ketterson, J.B., and Hilliard, J.E., J. Appl. Phys. 57, 1076 (1985).Google Scholar
23Yang, W.M.C., Tsakalakos, T., and Hilliard, J.E., J. Appl. Phys. 48, 876 (1977).Google Scholar
24Henein, G. and Hilliard, J.E., J. Appl. Phys. 54, 728 (1983).Google Scholar
25Fartash, A., Fullerton, E.E., Schuller, I. K., Bobbin, S.E., Wagner, J.W., Cammarata, R. C., Kumar, S., and Grimsditch, M., Phys. Rev. B 44, 13 760 (1991-11).Google Scholar
26Cammarata, R. C., Schlesinger, T. E., Kim, C., Qadri, S. B., and Edelstein, A. E., Appl. Phys. Lett. 56, 1862 (1990).Google Scholar
27Moreau, A., Ketterson, J. B., and Mattson, J., Appl. Phys. Lett. 56, 1959 (1990).Google Scholar
28Mintmire, J.W., Mater. Sci. Eng. A 126, 29 (1990).Google Scholar
29Davis, B.M., Seidman, D.N., Moreau, A., Ketterson, J.B., Mattson, J., and Grimsditch, M., Phys. Rev. B 43, 9304 (1991-11).Google Scholar
30Sasajima, Y., Taya, S., and Yamamoto, R., J. Magn. Magn. Mater. 126, 218 (1993).Google Scholar
31Weller, M., Diehl, J., and Schaffer, H-E., Philos. Mag. 63, 527 (1991).Google Scholar
32Korn, D., Morsch, A., Birringer, R., Arnold, W., and Gleiter, H., J. Phys. (Paris) 49, c5-375 (1988).Google Scholar
33Mayo, M.J., Siegel, R.W., Narayanasamy, A., and Nix, W.D., J. Mater. Res. 5, 1073 (1990).Google Scholar
34Krstic, V., Erb, U., and Palumbo, G., Scripta Metall. Mater. 29, 1501 (1993).Google Scholar
35Karpe, N., Lapogian, G., Bøttiger, J., and Krog, J.P., Philos. Mag. B 71, 445 (1995).Google Scholar
36Koch, C.C., NanoStru. Mater. 2, 109 (1993).Google Scholar
37Shen, T. D. and Koch, C.C., Mater. Sci. Forum 179–181, 17 (1995).Google Scholar
38Oliver, W. C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).Google Scholar
39Williamson, G. K. and Hall, W. H., Acta Metall. 1, 22 (1953).Google Scholar
40Wolfenden, A., Dynamic Elastic Modulus Measurements in Materials (ASTM, Philadelphia, PA, 1990), p. 135.Google Scholar
41Metals Handbook, 10th ed., Vol. 2, Properties and Selection—Nonferrous Alloys and Special-Purpose Materials (ASM INTERNATIONAL, Materials Park, OH, 1990), pp. 265, 338, 437.Google Scholar
42Giri, A. K., Mater. Lett. 17, 353 (1993).Google Scholar
43Boyer, R., Welsch, G., and Collings, E. W., Materials Properties Handbook: Titanium Alloys (ASM INTERNATIONAL, Materials Park, OH, 1994), p. 94.Google Scholar
44Palumbo, G., Thorpe, S.J., and Aust, K. T., Scripta Metall. Mater. 24, 1347 (1990).Google Scholar
45Wong, L., Ostrandeer, D., Erb, U., Palumbo, G., and Aust, K.T., in Nanophases and Nanocrystalline Structures, edited by Shull, R. D. and Sanchez, J. M. (The Minerals, Metals & Materials Society, Warrendale, PA, 1994), p. 85.Google Scholar
46Masumoto, T. and Maddin, R., Mater. Sci. Eng. 19, 1 (1975).Google Scholar
47Kluge, M.D., Wolf, D., Lutsko, J.F., and Phillpot, S.R., J. Appl. Phys. 67, 2370 (1990).Google Scholar
48Paul, B., Trans. AIME 218, 36 (1960).Google Scholar
49Chen, Da, Mater. Sci. Eng. A 190, 193 (1995).Google Scholar