Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T16:39:39.296Z Has data issue: false hasContentIssue false

Synthesis of titanium boride (TiB)2 nanocrystallites by solution-phase processing

Published online by Cambridge University Press:  03 March 2011

Susan E. Bates
Affiliation:
Department of Chemistry Washington University, St. Louis, Missouri 63130-4899
William E. Buhro
Affiliation:
Department of Chemistry Washington University, St. Louis, Missouri 63130-4899
Claire A. Frey
Affiliation:
Department of Mechanical Engineering, Washington University, St. Louis, Missouri 63130-4899
Shankar M.L. Sastry
Affiliation:
Department of Mechanical Engineering, Washington University, St. Louis, Missouri 63130-4899
K.F. Kelton
Affiliation:
Department of Physics, Washington University, St. Louis, Missouri 63130-4899
Get access

Abstract

Nanocrystalline TiB2 is prepared by reaction of NaBH4 and TiCl4. The initial solution-phase reaction affords an amorphous precursor powder from which 5-100 nm TiB2 crystallites are obtained upon annealing at 900-1100 °C. Crystallite sizes depend on the annealing temperature and other processing parameters. Crystallite morphology is size dependent; crystallites smaller than 12-15 nm are cuboidal, whereas crystallites larger than 12-15 nm are hexagonal platelets. The procedure affords gram quantities of the smallest available TiB2 nanocrystallites.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bowen, H. K., Gallagher, M. K., and Rhine, W.E., in Ultra-Structure Processing of Advanced Ceramics, edited by MacKenzie, J.D. and Ulrich, D.R. (John Wiley, New York, 1988), pp. 901906.Google Scholar
2Jensen, J. A., Gozum, J. E., Pollina, D. M., and Girolami, G. S., J. Am. Chem. Soc. 110, 1643 (1988).CrossRefGoogle Scholar
3Sastry, S. M. L., Lederick, R. J., and Peng, T. C., J. Metals 40, 11 (1988).Google Scholar
4Sastry, S. M. L., Peng, T. C., Meschter, P. J., and O'Neal, J.E., J. Metals 35, 21 (1983).Google Scholar
5Sastry, S. M. L., Peng, T. C., and Lederich, R.J., in Mechanical Behavior of Rapidly Solidified Materials, edited by Sastry, S.M.L. and MacDonald, B.A. (The Metallurgical Society, Warrendale, PA, 1986), p. 207.Google Scholar
6Whang, S. H., J. Mater. Sci. 21, 2224 (1986).CrossRefGoogle Scholar
7Honeycombe, R. W. K., in The Plastic Deformation of Metals, edited by Honeycombe, R.W.K. (St. Martin's Press, New York, 1968), p. 184.Google Scholar
8Courtney, T. H., Mechanical Behavior of Materials (McGraw-Hill, New York, 1990), p. 184.Google Scholar
9Siegel, R. W., Ramasamy, S., Hahn, H., Zongquan, L., Ting, L., and Gronsky, R., J. Mater. Res. 3, 1367 (1988).CrossRefGoogle Scholar
10Mayo, M. J., Siegel, R. W., Narayanasamy, A., and Nix, W. D., J. Mater. Res. 5, 1073 (1990).CrossRefGoogle Scholar
11Mayo, M. J., Siegel, R. W., Liao, Y. X., and Nix, W. D., J. Mater. Res. 7, 973 (1992).CrossRefGoogle Scholar
12Siegel, R. W., in Superplasticity in Metals, Ceramics, and Intermetallics, edited by Mayo, M.J., Kobayashi, M., and Wadsworth, J. (Mater. Res. Soc. Proc. 196, Pittsburgh, PA, 1990), p. 59.Google Scholar
13Siegel, R.W., Annu. Mater. Sci. 21, 559 (1991).CrossRefGoogle Scholar
14Gleiter, H., Prog. Mater. Sci. 33, 223 (1990).CrossRefGoogle Scholar
15Kear, B. H., Kim, B. K., and McCandlish, L.E., Nanostructured Materials 1, 119 (1992).Google Scholar
16The synthesis of Ti(BH4)3 was first reported in Hoekstra, H.R. and Katz, J. J., J. Am. Chem. Soc. 71, 2488 (1949). The synthesis of the THF and dme adducts were reported in the following: Reid, W.E., Bish, J. M., and Brenner, A., J. Electrochem. Soc. 104, 21 (1957); Franz, K., Fusstetter, K. H., and Noth, H. Z., Z. Anorg. Allg. Chem. 427, 97 (1976).CrossRefGoogle Scholar
17Hampden-Smith, M.J. and Zeng, D., Chem. Mater. 5, 681 (1993).Google Scholar
18Shriver, D. F., The Manipulation of Air-Sensitive Compounds (John Wiley, New York, 1986).Google Scholar
19Klug, H. P. and Alexander, L. E., X-Ray Diffraction Procedures (John Wiley, New York, 1974), pp. 687692.Google Scholar
20Ritter, J. J., Adv. Ceram. 21, 21 (1987).Google Scholar
21Jiang, Z. and Rhine, W. E., Chem. Mater. 4, 497 (1992).CrossRefGoogle Scholar
22Sneddon, L. G. and Su, K., Chem. Mater. 3, 10 (1991).Google Scholar
23Sneddon, L. G. and Su, K., Chem. Mater. 5, 1659 (1993).Google Scholar
24Rees, W. S. and Seyferth, D., J. Am. Ceram. Soc. 71, C-196 (1988).CrossRefGoogle Scholar
25Nagy, J. B., Bodart-Ravet, I., and Derouane, E. G., Faraday Discuss. Chem. Soc. 87, 189 (1989).CrossRefGoogle Scholar
26Glavee, G. N., Klabunde, K. J., Sorensen, CM., and Hadjapanayis, G. C., Langmuir 8, 771 (1992).CrossRefGoogle Scholar
27Schlesinger, H. I., Brown, H. C., Finholt, A. E., Gilbreath, J. R., Hockstrue, H. R., and Hyde, E. K., J. Am. Chem. Soc. 75, 215 (1953).CrossRefGoogle Scholar
28Brown, H. C. and Brown, C. A., J. Am. Chem. Soc. 84, 1493 (1962).CrossRefGoogle Scholar
29Brown, H. C. and Brown, C. A., J. Am. Chem. Soc. 84, 1494 (1962).CrossRefGoogle Scholar
30Brown, H. C. and Brown, C. A., J. Am. Chem. Soc. 84, 1495 (1962).CrossRefGoogle Scholar
31Brown, H. C. and Brown, C. A., J. Org. Chem. 31, 3989 (1966).CrossRefGoogle Scholar
32Brown, C. A. and Ahutja, V. K., J. Org. Chem 38, 2226 (1973).CrossRefGoogle Scholar
33Abdel-Hamid, A.A., Hamar-Thibault, S., and Hamar, R., J. Cryst. Growth 71, 744 (1985).CrossRefGoogle Scholar
34Higashi, I. and Atoda, T., J. Cryst. Growth 7, 251 (1970).CrossRefGoogle Scholar
35Sugiyama, K., Iwakoshi, S., Motojima, S., and Takahashi, Y., J. Cryst. Growth 43, 533 (1978).CrossRefGoogle Scholar
36Baumgartner, H. R. and Steiger, R. A., J. Am. Ceram. Soc. 67, 207 (1984).CrossRefGoogle Scholar
37Herring, C., Phys. Rev. 82, 87 (1951).CrossRefGoogle Scholar
38Christian, J. W., The Theory of Transformation in Metals and Alloys, Part I, 2nd ed. (Pergamon, New York, 1975), pp. 144158.Google Scholar
39Jena, A. K. and Chaturvedi, M. C., Phase Transformation in Materials (Prentice Hall, Englewood Cliffs, NJ, 1992), pp. 5762.Google Scholar
40Goldstein, A. N., Echer, C. M., and Alivisatos, A.P., Science 256, 1425 (1992), and references therein.CrossRefGoogle Scholar
41Solliard, C., Buffat, P., and Faes, F., J. Cryst. Growth 32, 123 (1976).CrossRefGoogle Scholar
42Flueli, M. and Borel, J-P., J. Cryst. Growth 91, 67 (1988).CrossRefGoogle Scholar
43Solliard, C. and Flueli, M., Surf. Sci. 156, 487 (1985).CrossRefGoogle Scholar
44We thank a reviewer for pointing out the work of Solliard and Flrüeli with gold nanocrystals.41–43Google Scholar
45Saito, Y., Mihama, K., and Uyeda, R., Jpn. J. Appl. Phys. 19, 1603 (1980).CrossRefGoogle Scholar
46Morokhov, I. D., Petinov, V. I., Trusov, L. I., and Petrunin, V. F., Sov. Phys. Usp. 24, 295 (1981).CrossRefGoogle Scholar
47Bates, S. E., Frey, C. A., Suryanarayanan, R., Chang, S. W., Sastry, S. M. L., and Buhro, W.E., unpublished results.Google Scholar