Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-28T14:27:22.742Z Has data issue: false hasContentIssue false

Properties of Gallium Nitride

Published online by Cambridge University Press:  25 February 2011

Jacques I. Pankove*
Affiliation:
SERI, Golden, Colorado 80401 and Department of Electrical and Computer Engineering, University of Colorado, Boulder, Colorado 80309
Get access

Abstract

Gallium nitride has many useful properties that include a large direct gap, high electrical and thermal conductivities, and nearly the hardness of sapphire. GaN decomposes at -100°C, can sustain high electron velocities and exhibit acoustoelectric effects. But two challenges remain: to make it conducting p-type and to synthesize the cubic phase in a large single crystal instead of the usual hexagonal structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pankove, J.I., J. Lumin. 7, 114 (1973).Google Scholar
2. Dingle, R., Shaklee, K.L., Lehny, R.F. and Zetterstrom, R.B., Appl. Phys. Lett. 19, 5 (1971); C.D. Wang and M. Gershenzon, Bull. A.P.S. 24, 343 (1979)Google Scholar
3. Pankove, J.l. and Schade, H., Appl. Phys. Lett. 25, 53 (1974); R.U. Martinelli and J.I. Pankove, Appl. Phys. Lett. 25, 549 (1974).Google Scholar
4. Duffy, M.T., Wang, C.C., O'Clock, G.D., McFarlane, S.H. III and Zanzucchi, P.J., J. Elec. Mat. 2, 359 (1973).Google Scholar
5. J.1. Pankove, Berkeyheiser, J.E., Kilpatrick, S.J. and Magee, C.W., J. Elect. Mat. 12, 359 (1983).Google Scholar
6. Bloom, S., Harbeke, G., Meier, E. and Ortenburger, I.B., Phys. Stat. Solidi (b), 66, 161 (1974).Google Scholar
7. J.1. Pankove and Hutchby, J.A., J. Appl. Phys. 42, 5387 (1976).Google Scholar
8. Ilegemsand, M.I. Montgomery, H.C., J. Phys. Chem. Solids, 34, 885 (1973); R.K. Crouch, W.J. Debnam and A.L. Fripp, J. of Mater. Sci. 13, 2358 (1978).Google Scholar
9. Rode, D.L. (private communication).Google Scholar
10. Dismukes, J.P., Yim, W.M., Tietjen, J.J. and Novak, R.E., RCA Review 31, 680 (1970).Google Scholar
11. Madar, R.. Jacob, G., Hallais, J. and Fruchart, R., J. Crystal Growth 31, 197 (1975).Google Scholar
12. J.1. Pankove and Norris, P.E., RCA Review 33, 377 (1972).Google Scholar
13. J.1. Pankove, Miller, E.A. and Berkeyheiser, J.E., RCA Review 32, 383 (1971).Google Scholar
14. Pankove, J.l. and Lampert, M.A., Phys. Rev. Lett. 33, 361 (1974).Google Scholar
15. Jacob, G. and Bois, D., Appl. Phys. Lett. 30, 412 (1977); M.D. Shagalov and A.G. Drijuk, J. Appl. Spectroscopy 41, 858 (1984).Google Scholar
16. Pankove, J.I., Phys. Rev. Lett. 34, 809 (1975).Google Scholar
17. Maruska, H.P. and Tietjen, J.J., Appl. Phys. Lett. 15, 327 (1969).Google Scholar
18. Khan, M.A., Skogman, R.A., Schulze, R.G. and Gershenzon, M., Appl. Phys. Lett. 42, 430 (1983) and 43, 492 (1983).Google Scholar
19. Matsubara, K., Horibe, T., Takaoka, H. and Takagi, T., Proc. 4th Symp. on Ion Sources and Ion Application Technology, Inst. El. Eng. Japan (June 1980), p. 137.Google Scholar
20. Zembutsu, S. and Sasaki, T., J. Crystal Growth 77, 250 (1986).Google Scholar
21. Sichel, E.K. and Pankove, J.l., J. Phys. Chem. Solids 38, 330 (1977).Google Scholar
22. Groth, R., Gerey, G., Bartha, L. and Pankove, J.I., Phys. Stat. Sol. (a) 26, 353 (1974).Google Scholar
23. Pankove, J.I., Bloom, S. and Harbeke, G., RCA Review 36, 163 (1975).Google Scholar
24. Nishino, S., Powell, J.A. and Will, H.A., Appl. Phys. Lett. 42, 460 (1983).Google Scholar