Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T17:02:00.054Z Has data issue: false hasContentIssue false

Model silica pores with controllable surface chemistry for molecular dynamics simulatinos

Published online by Cambridge University Press:  26 February 2011

Tolga S. Gulmen
Affiliation:
gulmen@ku.edu
Ward Thompson
Affiliation:
wthompson@ku.edu, Univ. of Kansas, United States
Get access

Abstract

Model amorphous silica pores have been developed for use in molecular dynamics simulations. Specifically, roughly cylindrical pores have been constructed with hydrophilic, hydroxyl-terminated surfaces. The approach is designed to allow systematic variation of the pore radius and surface functionality. Thus, these pores are suitable for studying the variability in solvent structure, energy transfer and reaction dynamics occurring inside the pore due to surface modification. The method is described and the properties of the generated pores are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Chorkendorff, I. and Niemantsverdriet, J. W. Concepts of Modern Catalysis and Kinetics, Wiley-VCH, Weinheim, 2003.Google Scholar
[2] Steed, J. W. and Atwood, J. L., Supramolecular Chemsitry, Wiley, Chichester, 2002.Google Scholar
[3] Kwon, O. H. and Jang, D. J., J. Phys. Chem. B, 109, 20479 (2005).Google Scholar
[4] Weik, M., Lehnert, U., and Zaccai, G., Biophys. J., 89, 3639 (2005).Google Scholar
[5] Li, D., Shi, F., and Deng, Y., Tetrahedron Lett., 45, 6791 (2004).Google Scholar
[6] Pivovar, A. A. and Pivovar, B. S., J. Phys. Chem. B, 109, 785 (2005).Google Scholar
[7] Jia, W. and Murad, S., J. Chem. Phys., 122, 234708 (2005).Google Scholar
[8] Descalzo, A. B., Marcos, M. B., Martinez-M’anez, R., Soto, J., Beltran, D., and Amor’ros, P., J. Mater. Chem., 15, 2721 (2005).Google Scholar
[9] M’etiver, R., Leray, I., Lebeau, B., and Valeur, B., J. Mater. Chem., 15, 2965 (2005).Google Scholar
[10] Dzubiella, J. and Hansen, J.-P., J. Chem. Phys., 122, 234706 (2005).Google Scholar
[11] Luo, R.-S. and Jonas, J., J. Raman Spec., 32, 975 (2001).Google Scholar
[12] Thompson, W. H., J. Phys. Chem. B, 109, 18201 (2005).Google Scholar
[13] Gomez, J. A., Tucker, A. K., Shepherd, T. D., and Thompson, W. H., J. Phys. Chem. B, 109, 17479 (2005).Google Scholar
[14] Thompson, W. H., J. Chem. Phys., 120, 8125 (2004).Google Scholar
[15] Br’odka, A. and Zerda, T. W., J. Chem. Phys., 104, 6314 (1996).Google Scholar
[16] Gallo, P., Rovere, M., and Spohr, R., J. Chem. Phys., 113, 11324 (2000).Google Scholar
[17] Feuston, B. P. and Higgins, J. B., J. Phys. Chem., 98, 4459 (1994).Google Scholar
[18] Schumacher, C., Gonzalez, J., Wright, P. A., and Seaton, N. A., J. Phys. Chem. B, 110, 319 (2006).Google Scholar
[19] van Beest, B. W. H., Kramer, G. J., and van Santen, R. A., Phys. Rev. Lett., 64, 1955 (1990).Google Scholar
[20] Smith, W., Leslie, M., and Forester, T. R., DLPOLY v2.14 http://www.cse.clrc.ac.uk/msi/software/DL_POLY/index.shtml, (2003).Google Scholar
[21] Huff, N. T., Demiralp, E., Çagin, T., and Goddard, W. A., J. Non-Cryst. Solids, 243, 133 (1999).Google Scholar
[22] Ma, Y., Foster, M. A., and Nieminen, R. M., J. Chem. Phys., 122, 144709 (2005).Google Scholar
[23] van Ginhoven, R. M., J’onsson, H., Park, B., and Corrales, L. R., J. Phys. Chem. B, 109, 10936 (2005).Google Scholar
[24] Mazurin, O. V., Streltsina, M. V., and Shvaiko-Shvaikovskaya, T. P., Handbook of Glass Data, Part A: Silica Glass and Binary Silicate Glasses, Elsevier, Amsterdam, 1983.Google Scholar
[25] Chapela, G. A., Saville, G., Thompson, S. M., and Rowlinson, J. S., J. Chem. Soc, Faraday Trans. 2, 73, 1133 (1977).Google Scholar
[26] Rarivamanantsoa, M., Jund, P., and Jullien, R., J. Phys.: Condense. Matter, 13, 6707 (2001).Google Scholar
[27] Hirama, Y., Takahashi, R., Hino, M., and Sato, T., J. Colloid Interface Sci., 184, 349 (1996).Google Scholar
[28] Zhu, X., Farrer, R. A., and Fourkas, J. T., J. Phys. Chem. B, 109, 12724 (2005).Google Scholar
[29] Handzlik, H., J. Phys. Chem. B, 109, 20794 (2005).Google Scholar