Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T20:05:25.418Z Has data issue: false hasContentIssue false

Non-contact C-V measurements of ultra thin dielectrics

Published online by Cambridge University Press:  15 July 2004

P. Edelman*
Affiliation:
Semiconductor Diagnostics Inc. 3650 Spectrum Blvd. #130, Tampa, FL 33612, USA
A. Savtchouk
Affiliation:
Semiconductor Diagnostics Inc. 3650 Spectrum Blvd. #130, Tampa, FL 33612, USA
M. Wilson
Affiliation:
Semiconductor Diagnostics Inc. 3650 Spectrum Blvd. #130, Tampa, FL 33612, USA
J. D'Amico
Affiliation:
Semiconductor Diagnostics Inc. 3650 Spectrum Blvd. #130, Tampa, FL 33612, USA
J. N. Kochey
Affiliation:
Semiconductor Diagnostics Inc. 3650 Spectrum Blvd. #130, Tampa, FL 33612, USA
D. Marinskiy
Affiliation:
Semiconductor Diagnostics Inc. 3650 Spectrum Blvd. #130, Tampa, FL 33612, USA
J. Lagowski
Affiliation:
Semiconductor Diagnostics Inc. 3650 Spectrum Blvd. #130, Tampa, FL 33612, USA
Get access

Abstract

In this paper, we present a non-contact C-V technique for ultra-thin dielectrics on silicon. The technique uses incremental corona charging of dielectric and a measurement of the surface potential with a vibrating capacitive electrode. A differential quasistatic C-V curve is generated using time-resolved measurements. The technique incorporates transconductance corrections that enable corresponding ultra-low electrical oxide thickness (EOT) determination down to the sub-nanometer range. It also provides a means for monitoring the flat band voltage, VFB, the interface trap spectrum, DIT, and the total dielectric charge, QTOT. This technique is seen as a replacement for not only MOS C-V measurements but also for mercury-probe C-V. In addition, EOT measurement by the corona C-V has a major advantage over optical thickness methods because it is not affected by water adsorption and molecular airborne contamination, MAC. These effects have been a problem for optical metrology of ultra-thin dielectrics.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

P. Edelman, J. Lagowski, A. Savtchouk, M. Wilson, A. Aleynikov, D. Marinsky, J. Navarro, Mat. Sci. Eng. B 91–92, 211 (2002)
Brown, A. E., Semicond. Int. 25, 55 (2002)
M. Wilson, J. Lagowski, A. Savtchouk, L. Jastrzebski, J. D'Amico, in Gate Dielectric Integrity: Material, Process and Tool Qualification, edited by D. C. Gupta, G. A. Brown (ASTM STP1382, West Conshohocken, 1999), p. 74
P. Edelman, A. Savtchouk, M. Wilson, J. D'Amico, J. N. Kochey, D. Marinsky, J. Lagowski, in Characterization and metrology for ULSI technology: 2003 International Conference on Characterization and Metrology for ULSI Technology, edited by D. G. Seiler, A. C. Diebold, T. J. Shaffner, R. McDonald, S. Zollner, R. P. Khosla, E. M. Secula (AIP Conference Proceedings 683, 2003), p. 160
J. Lagowski, M. Wilson, A. Savtchouk, US Patent 6, 538, 462 B1 (2003)
Ahmad, K. et al., IEEE Trans. El. Devices 47, 1349 (2000) CrossRef
Clerc, R., De Salvo, B., Ghibaudo, G., Reimbold, G., Pananakakis, G., Solid-State Electron. 46, 407 (2002) CrossRef
M. Wilson, J. Lagowski, L. Jastrzebski, A. Savtchouk, V. Faifer, in Characterization And Metrology For ULSI Technology, edited by D. G. Seiler, A. C. Diebold, R. McDonald, W. M. Bullis, P. J. Smith, E. M. Secula (AIP Conference Proceedings 550, 2001), p. 220