Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-17T18:31:15.795Z Has data issue: false hasContentIssue false

The Synthesis and Characterisation of Ge Containing Apatite-Type Oxide Ion Conductors

Published online by Cambridge University Press:  11 February 2011

P. R. Slater
Affiliation:
Department of Chemistry, University of Surrey, Guildford, Surrey. GU2 7XH., UK
J. E. H. Sansom
Affiliation:
Department of Chemistry, University of Surrey, Guildford, Surrey. GU2 7XH., UK
J. R. Tolchard
Affiliation:
Department of Chemistry, University of Surrey, Guildford, Surrey. GU2 7XH., UK
M. S. Islam
Affiliation:
Department of Chemistry, University of Surrey, Guildford, Surrey. GU2 7XH., UK
Get access

Abstract

Apatite-type oxides, La10-x(Si/Ge)6O26+z, have been attracting significant interest recently due to their high oxide ion conductivities. Most of the work so far has focused on the Si based systems, since the Ge based systems suffer from problems attributed to Ge loss. In this paper we show that doping divalent cations on the La site or B on the Ge site helps to stabilise the hexagonal apatite lattice for these Ge based systems. These doped phases show high oxide ion conductivities, although results from extended sintering studies suggest that Ge loss is still a problem. In order to limit Ge loss, we have also examined Bi doping to lower the sintering temperature and preliminary results for the novel Bi containing apatite-type phases, La6Bi2M2Ge6O26 (M=Mg, Sr, Ba) and La8-xBi2Ge5GaO26+y, are also reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakayama, S., Aono, H., Sadaoka, Y., Chem. Lett. 431 (1995).Google Scholar
2. Nakayama, S., Sakamoto, M., J. Eur. Ceram. Soc. 18, 1413 (1998).Google Scholar
3. Nakayama, S., Sakamoto, M., Higuchi, M., Kodaira, K., Sato, M., Kakita, S., Suzuki, T., Itoh, K., J. Eur. Ceram. Soc. 19, 507 (1999).Google Scholar
4. Tao, S., Irvine, J.T.S., Mater. Res. Bull. 36, 1245 (2001).Google Scholar
5. Sansom, J.E.H., Richings, D., Slater, P.R., Solid State Ionics 139, 205 (2001).Google Scholar
6. Abram, E.J., Sinclair, D.C., West, A.R., J. Mater. Chem. 11, 1978 (2001).Google Scholar
7. Arikawa, H., Nishiguchi, H., Ishihara, T., Takita, Y., Solid State Ionics 136–137, 31 (2000).Google Scholar
8. McFarlane, J., Barth, S., Swaffer, M., Sansom, J.E.H., Slater, P.R., Ionics 8, 149 (2002).Google Scholar
9. Sansom, J.E.H., Hildebrandt, L., Slater, P.R., Ionics 8, 155 (2002).Google Scholar
10. Sansom, J.E.H. and Slater, P.R.; Solid State Phenomena 90–91, 189 (2003).Google Scholar
11. Slater, P.R. and Sansom, J.E.H.; Solid State Phenomena 90–91, 195 (2003).Google Scholar
12. Nakayama, S. and Sakamoto, M.; J. Mater. Sci. Lett. 20, 1627 (2001).Google Scholar
13. Sansom, J.E.H. and Slater, P.R.; Proc. 5th Euro SOFC forum 2, 627 (2002).Google Scholar
14. Berastegui, P., Hull, S., Garcia Garcia, F.J. and Grins, J.; J. Solid State Chem. 168, 294 (2002).Google Scholar
15. Ishihara, T., Arikawa, H., Akbay, T., Nishiguchi, H., and Takita, Y.; J. Am. Chem. Soc. 123, 203 (2001).Google Scholar
16. Sansom, J.E.H. and Slater, P.R.; unpublished work.Google Scholar