Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T02:07:23.450Z Has data issue: false hasContentIssue false

Studies of the Effect of Various Gas Species on Si-SiO2 Interface Charges and Surface Roughness for Rapid Thermal Deposited Gate Oxides

Published online by Cambridge University Press:  10 February 2011

A. M. Bayoumi
Affiliation:
currently with Hewlett-Packard Laboratories, 3500 Deer Creek Rd., Palo Alto, CA 94304.
J. R. Hauser
Affiliation:
North Carolina State University, Electrical and Computer Engineering, Box 7911, Raleigh, NC 27695.
Get access

Abstract

The formation of Si-SiO2 interfaces for 40–60Å rapid thermal CVD (RTCVD) MOS gate oxides has been studied, using cluster tool technology. SiH4/N2O chemistry is used to deposit stoichiometric oxides. In-situ thermal treatments, prior to oxide deposition, typically at 800–900°C, 30–60 sec, and 50 Torr. are conducted using O2, N2O, SiH4, NH3, HCl/N2 and HCl/O2. The effect of gas flow ratios during temperature ramp-up for RTCVD interface formation is also studied. This paper presents a new quick-turnaround approach for non-destructive evaluation of Si-SiO2 interface quality for fully fabricated devices, in terms of interface charges and surface roughness.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Xu, X.L., Kuehn, R., Wortman, J.J., and Ozturk, M., App. Phys. Lett., Vol.60, No. 24, pp. 3063, 1992.Google Scholar
2. Bayoumi, A. M. and Hauser, J.R., Proc. 2nd Int'l RTP Conf., pp. 130, 1994, Fair, R. and Lojek, B., Eds.Google Scholar
3. Hauser, J.R., “Extraction of experimental mobility data for MOS devices,” IEEE Trans. Elec. Dev., In Press.Google Scholar
4. C.T.Sah, Ning, T. H., and Tschopp, L. L., Surface Sci, Vol.32, pp. 561, 1972.Google Scholar
5. Ning, T.H. and Sah, C. T., Physical Review B, Vol.6, No. 12, pp. 4605, Dec. 1972.Google Scholar
6. Manzini, S., J. Appl. Phys., Vol.57, No. 2, pp. 411, Jan. 1985.Google Scholar
7. Bayoumi, A. M., Ph. D. Thesis, North Carolina State University, 1995.Google Scholar
8. Shin, H., et. al., Sol. State Elect., Vol.34, No. 6, pp. 545, 1991.Google Scholar
9. Cheng, Y.C. and Sullivan, E. A., Surf. Sci., Vol.34, pp. 717, 1973.Google Scholar
10. Takagi, S., et. al., IEEE Trans. Elec. Dev., Vol.41, No. 12, pp. 2357, Dec. 1994.Google Scholar
11. Hartstein, A., Ning, T.H., and Fowler, A.B., Surf. Sci., Vol.58, pp. 178, 1976.Google Scholar
12. Goodnick, S.M., et. al., J. Vac. Sci. Technol. B, Vol.1, No. 3, pp. 803, July-Sept. 1983.Google Scholar
13. Gates, M. and Kulkarni, S. K., Appl. Phys. Lett., Vol.58, No. 25, pp. 29632965, June 1991.Google Scholar
14. Ohmi, T., et. al., IEEE Trans. Elec. Dev., Vol.39, No. 3, pp. 537, March 1992.Google Scholar
15. Wortman, J. J., Private Communication.Google Scholar
16. Grunthaner, P.J., et. al., J. Appl. Phys. Vol.61, No. 2, pp. 629, Jan. 87.Google Scholar
17. Vasquez, P. and Madhukar, A., Appl. Phys. Lett., Vol.47, No. 9, pp. 9981000, Nov. 1985.Google Scholar
18. Helms, R., “Physical Structure and Chemical Nature of the Si-SiO2 Interfacial Region”, in The SiSiO2 System, Editor Balk, P., Elsevier Science Pub., 1988.Google Scholar
19. Watanabe, W., Tanigaki, T., and Wakayama, S., J. Elect. Chem. Soc., Vol 12, pp. 2630, Dec. 81.Google Scholar